首页|基于小样本学习和多尺度残差网络的特纳综合征预测研究

基于小样本学习和多尺度残差网络的特纳综合征预测研究

扫码查看
为了提高特纳综合征(Turner Syndrome,TS)的诊断效率,提出一种基于小样本学习和多尺度残差网络的TS预测模型。对TS人脸图像进行预处理获取人脸主要区域,提出具有多级注意力机制的多尺度残差模块,其中,多尺度残差模块以集成多尺寸卷积核的残差结构实现,多级注意力机制用来学习特征通道关系和不同卷积核的重要性,利用该模块构建多尺度残差网络。使用小样本学习进行模型训练。实验结果表明,该模型能够提升TS的诊断准确率。
A PREDICTION MODEL FOR TURNER SYNDROME BASED ON FEW-SHOT LEARNING AND MULTISCALE RESIDUAL NETWOEK
A prediction model is proposed for improving the diagnosis efficiency of Turner syndrome(TS)based on a multiscale residual network(MRN)and few-shot learning.TS facial images were pre-processed to obtain the main facial areas.A multiscale residual block(MRB)with multilevel attention mechanisms(MAM)was designed.The MRB was implemented by integrating the residual structure of multi-scale convolution kernels,and the MAM was used to learn feature channel relationships and the importance of different convolution kernels.The MRN was built using the MRB.The few-shot learning was utilized to train the MRN.The experimental results demonstrate that the prediction model can improve the diagnostic accuracy of TS.

Turner syndromeAttention mechanismsResidual networkFew-shot learning

刘璐

展开 >

北京工业大学信息学部软件学院 北京 100124

特纳综合征 注意力机制 残差网络 小样本学习

国家重点研发计划项目

2020YFB2104402

2024

计算机应用与软件
上海市计算技术研究所 上海计算机软件技术开发中心

计算机应用与软件

CSTPCD北大核心
影响因子:0.615
ISSN:1000-386X
年,卷(期):2024.41(9)