首页|通道加权下的双判别GAN超分辨率网络

通道加权下的双判别GAN超分辨率网络

扫码查看
针对现有基于生成对抗网络的单图超分辨率重构方法特征利用率不足,生成图像包含少量无意义噪声的问题,提出一种基于通道注意力机制的双判别生成对抗网络。通过对生成网络中密集残差块进行通道加权,优化网络的特征利用率。同时在对抗网络中对生成图像进行像素域和特征域的双重判别,促使生成网络产生更丰富的结构特征和高频信息。实验结果表明,与现有的SRGAN、ESRGAN两种算法相比,该算法能够重构出感官质量更高的图像。
IMAGE SUPER-RESOLUTION WITH DUAL DISCRIMINANT GAN UNDER CHANNEL WEIGHTING
Existing single image super-resolution methods based on the generative adversarial network cannot make full use of features,and the generated image contains a small amount of meaningless noise.Therefore,this paper proposes a dual discriminant generative adversarial network based on channel attention mechanism.In the generation network,channel attention mechanism was used in the dense residual blocks to improve feature utilization rate.Simultaneously by dual discrimination of pixels and features on the generated image,richer structural features and high frequency information was promoted to produce.Experimental results show that compared with the existing SRGAN and ESRGAN algorithms,the proposed algorithm achieves lower NIQE and PI values and can reconstruct images with better perceptual quality.

Image super-resolution reconstructionGenerative adversarial networkChannel attentionFeature discriminatorVisual quality

张港、陈东方、王晓峰

展开 >

武汉科技大学计算机科学与技术学院 湖北武汉 430065

武汉科技大学智能信息处理与实时工业系统湖北省重点实验室 湖北武汉 430065

图像超分辨率重建 生成对抗网络 通道注意力 特征判别器 视觉质量

国家自然科学基金项目国家自然科学基金项目

6157238161273225

2024

计算机应用与软件
上海市计算技术研究所 上海计算机软件技术开发中心

计算机应用与软件

CSTPCD北大核心
影响因子:0.615
ISSN:1000-386X
年,卷(期):2024.41(9)