首页|基于数据特征感知潜在因子的QoS预测方法

基于数据特征感知潜在因子的QoS预测方法

扫码查看
为了提升可扩展性与噪声鲁棒性,提出一种基于数据特征感知潜在因子的服务质量预测方法。从原始服务质量稀疏数据中提取密集潜在因子,检测用户和服务的邻域和噪声,在建模过程中引入了密度峰值聚类方法,实现了对服务质量数据邻域和噪声的同时检测,从而精确地表示给定的服务质量数据,实现对未知数据的高精度预测。在实际Web服务生成的两个QoS数据集上的实验结果表明,提出的方法能够有效提升预测精度和鲁棒性。
QOS PREDICTION METHOD BASED ON DATA FEATURE PERCEPTION POTENTIAL FACTOR
In order to improve scalability and noise robustness,a QoS prediction method based on data feature perception potential factor is proposed.The dense potential factors were extracted from the original sparse data of QoS to detect the neighborhood and noise of users and services.The density peak clustering method was introduced in the modeling process to realize the simultaneous detection of QoS data neighborhood and noise.The given QoS data could be accurately expressed and the high-precision prediction of unknown data could be realized.Experimental results on two QoS data sets generated by real Web services show that the proposed method can effectively improve the prediction accuracy and robustness.

Data feature perceptionPotential factorsService qualityDensity peak clustering

任利军、范晓静、肖志

展开 >

呼和浩特职业学院 内蒙古呼和浩特 010051

天津师范大学计算机与信息工程学院 天津 300308

数据特征感知 潜在因子 服务质量 密度峰值聚类

国家自然科学基金项目

61070089

2024

计算机应用与软件
上海市计算技术研究所 上海计算机软件技术开发中心

计算机应用与软件

CSTPCD北大核心
影响因子:0.615
ISSN:1000-386X
年,卷(期):2024.41(9)