首页|基于改进的无迹卡尔曼滤波长基线定位算法研究

基于改进的无迹卡尔曼滤波长基线定位算法研究

扫码查看
在复杂的水环境中,自主水下机器人(Autonomous Underwater Vehicle,AU V)运用声学导航系统实现自主导航并确保精确定位。针对水声环境中由于外部噪声带来的定位精度损失问题,提出一种改进的无迹卡尔曼滤波(Adapt Unscented Kalman Filter,AUKF)长基线定位算法。该算法在无迹卡尔曼算法(UKF)的基础上引入遗忘因子,充分利用新的测量数据动态调整测量协方差矩阵和过程协方差矩阵,有效避免因长期运行带来的累计误差。实验结果显示,当AUV沿两种不同轨迹运行时,AUKF算法的均方根误差最低,分别为2。901 1、19。221 5。该算法定位精度高,适用于长时间工作的高精度水下定位。
LONG BASELINE POSITIONING ALGORITHM BASED ON IMPROVED UNTRACED KALMAN FILTER
In complex water environments,the autonomous underwater vehicle(AUV)uses an acoustic navigation system to navigate autonomously and ensure accurate positioning.An improved untracked Kalman filter(AUKF)long baseline positioning algorithm is proposed to solve the problem of positioning accuracy loss caused by external noise in underwater acoustic environment.Based on the untraceable Kalman algorithm(UKF),the forgetting factor was introduced,and the new measurement data were used to dynamically adjust the measurement covariance matrix and process covariance matrix,which could effectively avoid the cumulative error caused by long-term operation.The experimental results show that when AUV runs along two different trajectories,the root mean square error of AUKF algorithm is the lowest,which is 2.901 1 and 19.221 5,respectively.It shows that this algorithm has high positioning accuracy and is suitable for long time underwater positioning with high precision.

AUVLong baseline positioningAdaptive untraceable Kalman filter

侯华、王曹、杨沛钊、曹俊俊

展开 >

河北工程大学信息与电气工程学院 河北邯郸 056038

AUV 长基线定位 自适应无迹卡尔曼滤波

河北省教育厅科学技术研究重点项目

ZD2019019

2024

计算机应用与软件
上海市计算技术研究所 上海计算机软件技术开发中心

计算机应用与软件

CSTPCD北大核心
影响因子:0.615
ISSN:1000-386X
年,卷(期):2024.41(9)