计算机应用与软件2024,Vol.41Issue(9) :319-328.DOI:10.3969/j.issn.1000-386x.2024.09.045

基于注意机制LSTM-CNN的准周期时间序列异常检测框架

AUTOMATIC QTS ANOMALY DETECTION FRAMEWORK BASED ON ATTENTION MECHANISM LSTM-CNN

周孔均 常涛 刘维 吕小红
计算机应用与软件2024,Vol.41Issue(9) :319-328.DOI:10.3969/j.issn.1000-386x.2024.09.045

基于注意机制LSTM-CNN的准周期时间序列异常检测框架

AUTOMATIC QTS ANOMALY DETECTION FRAMEWORK BASED ON ATTENTION MECHANISM LSTM-CNN

周孔均 1常涛 1刘维 1吕小红1
扫码查看

作者信息

  • 1. 国网重庆市电力公司 重庆 400014
  • 折叠

摘要

为提升时间序列异常检测方法的通用性与精度,提出一种基于注意机制LSTM-CNN的准周期时间序列异常检测框架.该文通过QTS分割算法将准周期时间序列分割成多个连续的高质量准周期子序列,提升抗噪声能力;基于LSTM-CNN模型同时捕捉准周期的总体变化趋势和局部特征,精确地模拟准周期的波动模式.在4个公共数据集上的实验结果表明,提出的方法能够有效提升序列行为异常检测的效果.

Abstract

In order to improve the generality and accuracy of the detection method,an automatic quasi periodic time series anomaly detection framework based on attention mechanism LSTM-CNNis proposed.The purpose of the QTS segmentation algorithm was to automatically and accurately segment QTS into continuous high-quality quasi periods and improve the ability of anti-noise.The purpose of the LSTM-CNN model was to accurately simulate the quasi periodic fluctuation pattern by using the overall trend and local characteristics of the quasi periodic at the same time.Experimental results on four common datasets show that the proposed method can effectively improve the detection versatility and accuracy.

关键词

准周期时间序列/异常检测/注意机制/长短期记忆网络

Key words

Quasi periodic time series/Anomaly detection/Attention mechanism/Long and short term memory network

引用本文复制引用

基金项目

重庆市自然科学基金项目(cstc2016jcyjA0214)

出版年

2024
计算机应用与软件
上海市计算技术研究所 上海计算机软件技术开发中心

计算机应用与软件

CSTPCD北大核心
影响因子:0.615
ISSN:1000-386X
段落导航相关论文