首页|基于注意机制LSTM-CNN的准周期时间序列异常检测框架

基于注意机制LSTM-CNN的准周期时间序列异常检测框架

扫码查看
为提升时间序列异常检测方法的通用性与精度,提出一种基于注意机制LSTM-CNN的准周期时间序列异常检测框架.该文通过QTS分割算法将准周期时间序列分割成多个连续的高质量准周期子序列,提升抗噪声能力;基于LSTM-CNN模型同时捕捉准周期的总体变化趋势和局部特征,精确地模拟准周期的波动模式.在4个公共数据集上的实验结果表明,提出的方法能够有效提升序列行为异常检测的效果.
AUTOMATIC QTS ANOMALY DETECTION FRAMEWORK BASED ON ATTENTION MECHANISM LSTM-CNN
In order to improve the generality and accuracy of the detection method,an automatic quasi periodic time series anomaly detection framework based on attention mechanism LSTM-CNNis proposed.The purpose of the QTS segmentation algorithm was to automatically and accurately segment QTS into continuous high-quality quasi periods and improve the ability of anti-noise.The purpose of the LSTM-CNN model was to accurately simulate the quasi periodic fluctuation pattern by using the overall trend and local characteristics of the quasi periodic at the same time.Experimental results on four common datasets show that the proposed method can effectively improve the detection versatility and accuracy.

Quasi periodic time seriesAnomaly detectionAttention mechanismLong and short term memory network

周孔均、常涛、刘维、吕小红

展开 >

国网重庆市电力公司 重庆 400014

准周期时间序列 异常检测 注意机制 长短期记忆网络

重庆市自然科学基金项目

cstc2016jcyjA0214

2024

计算机应用与软件
上海市计算技术研究所 上海计算机软件技术开发中心

计算机应用与软件

CSTPCD北大核心
影响因子:0.615
ISSN:1000-386X
年,卷(期):2024.41(9)