首页|基于多智能体DRL的区块链物联网协同计算卸载

基于多智能体DRL的区块链物联网协同计算卸载

扫码查看
由于基于深度强化学习算法收敛速度慢、鲁棒性差、性能不稳定,提出一种基于多智能体DRL框架的区块链物联网协同计算卸载算法。设计一种高效的多智能体深度强化学习算法,提出一种基于代理策略的初始化方法,避免了智能体训练初始阶段的无用探索,大大减少了在智能体训练中达到稳定性能所需的时间。引入联盟学习机制,并为智能体构造了分散网络,提升算法对动态环境的适应能力。仿真对比结果证明了该算法能够有效提升鲁棒性以及收敛速度。
COLLABORATIVE COMPUTING UNLOADING OF BLOCKCHAIN INTERNET OF THINGS BASED ON MULTI-AGENT DRL
Due to the slow convergence speed,poor robustness and unstable performance of deep reinforcement learning algorithm,a collaborative computing unloading algorithm based on multi-agent deep reinforce learning framework for blockchain IoT is proposed.An efficient multi-agent deep reinforcement learning algorithm was designed,and an initialization method based on agent strategy was proposed,which avoided useless exploration in the initial stage of agent training and greatly reduced the time required to achieve stable performance in agent training.The coalition learning mechanism was introduced,and a decentralized network was constructed for the agent to improve the adaptability of the algorithm to the dynamic environment.The simulation results show that the algorithm can effectively improve the robustness and convergence speed.

BlockchainInternet of thingsDeep reinforce learningCalculate unload

张华英

展开 >

河南建筑职业技术学院建设信息工程系 河南郑州 450064

区块链 物联网 深度强化学习 计算卸载

河南省教育厅高等学校重点科研项目

21B520005

2024

计算机应用与软件
上海市计算技术研究所 上海计算机软件技术开发中心

计算机应用与软件

CSTPCD北大核心
影响因子:0.615
ISSN:1000-386X
年,卷(期):2024.41(9)