计算机应用与软件2024,Vol.41Issue(9) :348-356,362.DOI:10.3969/j.issn.1000-386x.2024.09.048

基于平衡分层K均值的正交无监督大型图嵌入降维算法

ORTHOGONAL UNSUPERVISED LARGE GRAPH EMBEDDING DIMENSION REDUCTION ALGORITHM BASED ON BALANCED HIERARCHICAL K-MEANS

张志丽 古晓明 王文晶
计算机应用与软件2024,Vol.41Issue(9) :348-356,362.DOI:10.3969/j.issn.1000-386x.2024.09.048

基于平衡分层K均值的正交无监督大型图嵌入降维算法

ORTHOGONAL UNSUPERVISED LARGE GRAPH EMBEDDING DIMENSION REDUCTION ALGORITHM BASED ON BALANCED HIERARCHICAL K-MEANS

张志丽 1古晓明 1王文晶2
扫码查看

作者信息

  • 1. 山西经济管理干部学院 山西太原 030024
  • 2. 山西工程科技职业大学 山西太原 030000
  • 折叠

摘要

为了降低大规模数据集降维的计算代价,提出一种基于平衡分层K均值的正交无监督图嵌入降维方法.该文给出局部保持投影和谱回归等价的充分必要条件;基于平衡分层K-means的锚生成策略,构建加快局部保持投影求解过程的特殊相似矩阵;再结合正交约束,提出正交化无监督大型图嵌入降维方法;在几种公开数据集上进行扩展实验,结果表明提出的方法能够对大规模数据集实现高效快速的降维.

Abstract

In order to reduce the computational cost of dimensionality reduction of large-scale data sets,an orthogonal unsupervised graph embedding dimensionality reduction algorithm based on balanced hierarchical K-means is proposed.The necessary and sufficient conditions for locally preserving the equivalence of projection and spectral regression were obtained.An anchor generation strategy based on balanced hierarchical K-means was put forward,and a special similarity matrix was constructed to accelerate the process of local preserving projection.Combined with the orthogonal constraints,an orthogonal unsupervised large-scale graph embedding dimension reduction method is proposed.Experiments on several public data sets show that the proposed method can achieve efficient and fast dimensionality reduction for large-scale data sets.

关键词

数据降维/平衡分层K均值/局部保持投影/无监督大型图嵌入

Key words

Data dimension reduction/Balanced hierarchical K-means/Locality preserving projection/Unsupervised large graph embedding

引用本文复制引用

基金项目

山西省教育科学规划课题(HLW-20165)

出版年

2024
计算机应用与软件
上海市计算技术研究所 上海计算机软件技术开发中心

计算机应用与软件

CSTPCD北大核心
影响因子:0.615
ISSN:1000-386X
段落导航相关论文