首页|基于平衡分层K均值的正交无监督大型图嵌入降维算法

基于平衡分层K均值的正交无监督大型图嵌入降维算法

扫码查看
为了降低大规模数据集降维的计算代价,提出一种基于平衡分层K均值的正交无监督图嵌入降维方法.该文给出局部保持投影和谱回归等价的充分必要条件;基于平衡分层K-means的锚生成策略,构建加快局部保持投影求解过程的特殊相似矩阵;再结合正交约束,提出正交化无监督大型图嵌入降维方法;在几种公开数据集上进行扩展实验,结果表明提出的方法能够对大规模数据集实现高效快速的降维.
ORTHOGONAL UNSUPERVISED LARGE GRAPH EMBEDDING DIMENSION REDUCTION ALGORITHM BASED ON BALANCED HIERARCHICAL K-MEANS
In order to reduce the computational cost of dimensionality reduction of large-scale data sets,an orthogonal unsupervised graph embedding dimensionality reduction algorithm based on balanced hierarchical K-means is proposed.The necessary and sufficient conditions for locally preserving the equivalence of projection and spectral regression were obtained.An anchor generation strategy based on balanced hierarchical K-means was put forward,and a special similarity matrix was constructed to accelerate the process of local preserving projection.Combined with the orthogonal constraints,an orthogonal unsupervised large-scale graph embedding dimension reduction method is proposed.Experiments on several public data sets show that the proposed method can achieve efficient and fast dimensionality reduction for large-scale data sets.

Data dimension reductionBalanced hierarchical K-meansLocality preserving projectionUnsupervised large graph embedding

张志丽、古晓明、王文晶

展开 >

山西经济管理干部学院 山西太原 030024

山西工程科技职业大学 山西太原 030000

数据降维 平衡分层K均值 局部保持投影 无监督大型图嵌入

山西省教育科学规划课题

HLW-20165

2024

计算机应用与软件
上海市计算技术研究所 上海计算机软件技术开发中心

计算机应用与软件

CSTPCD北大核心
影响因子:0.615
ISSN:1000-386X
年,卷(期):2024.41(9)