计算机应用与软件2024,Vol.41Issue(9) :383-390,397.DOI:10.3969/j.issn.1000-386x.2024.09.053

考虑可再生能源协调出力的电动汽车充电定价方法

CHARGING PRICING METHOD OF ELECTIC VEHICLE CONSIDERING COORDIRATIED OUTPUT OF RENEWABLE ENERGY

陆斯悦 及洪泉 张禄 徐蕙 王培祎
计算机应用与软件2024,Vol.41Issue(9) :383-390,397.DOI:10.3969/j.issn.1000-386x.2024.09.053

考虑可再生能源协调出力的电动汽车充电定价方法

CHARGING PRICING METHOD OF ELECTIC VEHICLE CONSIDERING COORDIRATIED OUTPUT OF RENEWABLE ENERGY

陆斯悦 1及洪泉 1张禄 1徐蕙 1王培祎1
扫码查看

作者信息

  • 1. 国网北京市电力公司 北京 100075
  • 折叠

摘要

在一个配电网和城市交通网耦合框架中,提出一种电动汽车充电定价方法.建立以社会总成本最小为目标的电动汽车充电服务费的双层优化模型,模型上层为在含风电的配电网中求解充电服务费(Charging Service Fees,CSF)的二阶锥问题;下层为一个遵循用户均衡(User Equilibrium,UE)原则的交通分配问题.该模型考虑了风电输出和OD交通流的不确定性,建立基于深度强化学习的求解框架,对随机双层问题进行解耦和近似求解.以5节点系统和某城市交通-电力耦合网为例,验证了该模型的有效性.

Abstract

A charging pricing method for electric vehicles is proposed in a coupling framework of distribution network and urban transportation network.In this paper,a two-level optimization model for charging service charge of electric vehicles was established with the objective of minimizing the total social cost.The upper layer of the model was to solve the second-order cone problem of charging service fees(CSF)in the distribution network with wind power,and the lower level was a traffic assignment problem following the user equilibrium(UE)principle.Considering the uncertainty of wind power output and OD traffic flow,a solution framework based on deep reinforcement learning was established to decouple and approximate solve the stochastic bilevel problem.The effectiveness of the model is verified by a 5-bus system and a city traffic power coupling network.

关键词

深度强化学习/配电网/交通网/电动汽车充电费用/交通用户均衡

Key words

Deep reinforcement learning/Distribution network/Transportation network/Electric vehicle charging fees/Traffic user equilibrium

引用本文复制引用

基金项目

国家电网公司科技项目(52020119000C)

出版年

2024
计算机应用与软件
上海市计算技术研究所 上海计算机软件技术开发中心

计算机应用与软件

CSTPCD北大核心
影响因子:0.615
ISSN:1000-386X
段落导航相关论文