首页|基于注意力机制的门控密集卷积网络调制识别算法

基于注意力机制的门控密集卷积网络调制识别算法

扫码查看
自动调制识别(AMR)是非合作通信系统中的重要组成部分,也是一个通信领域的研究难点。针对该难点,利用深度学习,将密集卷积网络(DenseNet)、门控循环单元(GRU)和注意力机制(Attention)三者结合,提出一种基于注意力机制的门控密集卷积网络(AGDCN)的调制识别算法。该算法提取了信号的空间特征和时序特征,将两者相结合解决了信号识别率低的问题。同时,在网络中加入注意力机制,对GRU训练过程进行权重的自适应调整,有效地加强关键特征的学习。通过实验验证了AGDCN模型性能优于其他神经网络算法,在信噪比超过2 dB时,对11种调制类型的识别率可以达到90%。
A MODULATION RECOGNITION ALGORITHM BASED ON ATTENTION MECHANISM AND GATED DENSE CONVOLUTIONAL NETWORKS
Automatic modulation recognition(AMR)is an important part of non cooperative communication system,and it is also a research difficulty in the field of communication.In order to solve the above problems,this paper proposes an attention based gated dense convolutional network(AGDCN)modulation recognition algorithm by combining dense convolutional network(DenseNet),gated recurrent unit(GRU)and attention mechanism.The algorithm extracted the spatial and temporal features of the signal,and combined them to solve the problem of low recognition rate.Attention mechanism was added to the network to adaptively adjust the weight of GRU training process and effectively strengthen the learning of key features.Experiments show that the proposed AGDCN model outperforms other mainstream neural network algorithms.Specifically,when SNR exceeds 2 dB,the recognition rate of 11 modulation types can reach 90%.

Automatic modulation recognitionDeep learningDense convolutional networkGated recurrent unitAttention mechanism

杨驰、龚晓峰、雒瑞森

展开 >

四川大学电气工程学院 四川成都 610065

自动调制识别 深度学习 密集卷积网络 门控循环单元 注意力机制

四川省重点研发计划项目国家自然科学基金项目校企合作项目校企合作项目

2020YFG00516187611419H112119H0355

2024

计算机应用与软件
上海市计算技术研究所 上海计算机软件技术开发中心

计算机应用与软件

CSTPCD北大核心
影响因子:0.615
ISSN:1000-386X
年,卷(期):2024.41(10)