计算机应用与软件2024,Vol.41Issue(10) :149-154.DOI:10.3969/j.issn.1000-386x.2024.10.023

基于VAE优化的YOLO-ResNeXt二阶段草莓熟度分析方法

TWO STAGE MATURITY ANALYSIS OF STRAWBERRY BASED ON YOLO-RESNEXT OPTIMIZED BY VAE

田宏伟 徐云龙 杨艳红 刘雪兰 任艳
计算机应用与软件2024,Vol.41Issue(10) :149-154.DOI:10.3969/j.issn.1000-386x.2024.10.023

基于VAE优化的YOLO-ResNeXt二阶段草莓熟度分析方法

TWO STAGE MATURITY ANALYSIS OF STRAWBERRY BASED ON YOLO-RESNEXT OPTIMIZED BY VAE

田宏伟 1徐云龙 1杨艳红 1刘雪兰 2任艳1
扫码查看

作者信息

  • 1. 苏州大学应用技术学院 江苏苏州 215325
  • 2. 江苏农牧科技职业学院农业信息学院 江苏泰州 225300
  • 折叠

摘要

草莓作为高价值经济作物,其自动化采摘需要进行目标发现及熟度判断,传统草莓采摘分析方法主要使用色度和大小分析等简单图像处理方法,误报率高.提出二阶段检测网络YOLO-ResNeXt,并根据互联网图片及产地实拍创建Strawberry3000数据集,在此基础上,创新性采用变分自编码器(Variational Auto-Encoder,VAE)进行网络部分结构的快速搜索,该方案效率高且对简单结构搜索起到了较好的效果.经测试,该算法能够有效检测草莓目标并分析草莓熟度,在准确率及召回率等指标上对比通用计算机视觉算法有着很大提高,将有效促进高价值经济作物采摘工作的发展.

Abstract

As a high-value economic crop,strawberry's automatic picking requires target detection and maturity judgment.Traditional strawberry picking analysis methods mainly use simple image processing methods such as color and size analysis,which has high false alarm rate.In this paper,a two-stage detection network YOLO-ResNeXt is proposed.The Strawberry3000 dataset was created according to the Internet images and the actual farmland photos.On this basis,this paper innovatively used the variational auto-encoder(VAE)to search the network structure quickly,which had high efficiency and good effect on the simple structure search.According to the test results,the algorithm can effectively detect strawberry target and analyze strawberry maturity.Compared with the traditional computer vision algorithm,the accuracy and recall rate are greatly improved,which will effectively promote the development of high-value economic crop picking.

关键词

计算机视觉/深度学习/目标检测

Key words

Computer vision/Deep learning/Object detection

引用本文复制引用

基金项目

国家自然科学基金项目(61472262)

出版年

2024
计算机应用与软件
上海市计算技术研究所 上海计算机软件技术开发中心

计算机应用与软件

CSTPCD北大核心
影响因子:0.615
ISSN:1000-386X
段落导航相关论文