首页|基于Shapley加性解释的ChatGPT生成文本检测模型研究

基于Shapley加性解释的ChatGPT生成文本检测模型研究

扫码查看
针对如何快速识别文本内容是否为ChatGPT所生成的问题,提出一种基于BERT-BiGRU的AI生成文本检测模型。该模型使用预训练的BERT(Bidirectional Encoder Representations from Transformers)抽取文本的语义特征,并使用BiGRU(Bidirectional Gated Recurrent Unit)进行特征综合提炼;将BERT-BiGRU分类模型在AI生成检测数据集HC3(Human ChatGPT Comparison Corpus)上的分类性能进行相关模型评估;引入Shapley加性解释工具(SHAP)从全局和局部两个维度对不同模型所识别出的关键特征和基准值进行比较分析。实验结果表明,虽然深度学习和预训练BERT分类模型均取得了较好的分类性能,但在未学习过语种数据集上性能下降严重,然而BERT-BiGRU模型表现优秀;不同模型使用可解释工具在同一数据集上计算得到的关键词差异较大,且关键词多为数字、生僻字和标点符号,模型并未真正理解人类撰写文本与AI生成文本的内在特征区别,基于已有封闭数据集训练得到的模型无法真正应对开放式的实际应用场景。
CHATGPT GENERATED TEXT DETECTION MODEL BASED ON SHAPLEY ADDITIVE EXPLANATIONS
In order to quickly identify whether text content is generated by ChatGPT,this paper proposes an AI generated text detection model based on BERT-BiGRU.We used pre-trained BERT(bidirectional encoder representations from transformers)to extract semantic features of the text,and used BiGRU(bidirectional gated recurrent unit)for comprehensively extracted feature.The classification performance of the BERT-BiGRU classification model on the AI generated detection dataset HC3(human ChatGPT comparison corpus)was evaluated.The shapley additive exPlanations(SHAP)was introduced to compare and analyze the keywords and benchmark values identified by different models from both global and local dimensions.Experimental results show that although both deep learning and pre-trained BERT classification models have achieved good classification accuracy,their performance has seriously declined on unlearned datasets,BERT-BiGRU model still has high accuracy.These models'keywords which are calculated on same dataset are quite different,and most of the keywords are numbers,rare characters,and punctuation.These models don't truly understand the inherent characteristics of real human-written text and AI generated texts,models trained on existing closed datasets cannot truly cope with open practical application scenarios.

ChatGPTSHAPBERTBiGRUHC3AI generated text detection

刘冬、陈一民

展开 >

上海公安学院 上海 200137

上海建桥学院 上海 201306

ChatGPT SHAP BERT BiGRU HC3 AI生成文本检测

上海公安学院科研项目

23xkx53

2024

计算机应用与软件
上海市计算技术研究所 上海计算机软件技术开发中心

计算机应用与软件

CSTPCD北大核心
影响因子:0.615
ISSN:1000-386X
年,卷(期):2024.41(10)