计算机应用与软件2024,Vol.41Issue(10) :325-334,392.DOI:10.3969/j.issn.1000-386x.2024.10.048

基于奇异阈值加速算法的时间低秩子空间聚类

TEMPORAL LOW RANK SUBSPACE CLUSTERING BASED ON ITERATED WEIGHTED SINGULAR VALUE

许堉坤 朱铮 陈海宾 甄昊涵
计算机应用与软件2024,Vol.41Issue(10) :325-334,392.DOI:10.3969/j.issn.1000-386x.2024.10.048

基于奇异阈值加速算法的时间低秩子空间聚类

TEMPORAL LOW RANK SUBSPACE CLUSTERING BASED ON ITERATED WEIGHTED SINGULAR VALUE

许堉坤 1朱铮 1陈海宾 1甄昊涵1
扫码查看

作者信息

  • 1. 国网上海市电力公司电力科学研究院 上海 200051
  • 折叠

摘要

为提升算法的应用范围与聚类性能,提出一种基于奇异阈值加速算法的时间低秩子空间聚类.为了解决基于核范数的约束通常导致次优解的缺点,对代价函数提出一种强凸优化方法,从理论上保证了后续更新子问题的唯一解.然后引入外推技术和秩级递进运算,提出一种迭代加权奇异值极小化算法以及奇异值阈值加速算法,从而减小计算复杂度,确保快速收敛.在几个公开的数据集上的实验结果表明,该模型能够揭示数据空间聚集性的内在结构,推广应用范围,提升聚类性能.

Abstract

In order to improve the application scope and clustering performance,a temporal low rank subspace clustering algorithm based on iterative weighted singular value is proposed.In order to solve the problem that the constraint based on kernel norm usually leads to sub-optimal solution,a strong convex optimization method was proposed for the cost function,which guaranteed the unique solution of the subsequent update sub-problem theoretically.An iterative weighted singular value minimization algorithm and a singular value threshold acceleration algorithm were proposed by introducing extrapolation technique and rank progressive operation,so as to reduce the computational complexity and ensure fast convergence.Experimental results on several open data sets show that the model can reveal the internal structure of data,extend the application scope and improve the clustering performance.

关键词

子空间聚类/迭代加权奇异值/凸优化/核范数

Key words

Subspace clustering/Iterative weighted singular value/Convex optimization/Kernel norm

引用本文复制引用

基金项目

国网上海市电力公司科技项目(520940170023)

出版年

2024
计算机应用与软件
上海市计算技术研究所 上海计算机软件技术开发中心

计算机应用与软件

CSTPCD北大核心
影响因子:0.615
ISSN:1000-386X
段落导航相关论文