计算机应用与软件2024,Vol.41Issue(10) :342-348.DOI:10.3969/j.issn.1000-386x.2024.10.050

基于区块重组和双通道可视化的恶意代码分类

CLASSIFICATION OF MALICIOUS CODE BASED ON BLOCK REORGANIZATION AND DUAL CHANNEL VISUALIZATION

李豪 钱丽萍 朱晓慧
计算机应用与软件2024,Vol.41Issue(10) :342-348.DOI:10.3969/j.issn.1000-386x.2024.10.050

基于区块重组和双通道可视化的恶意代码分类

CLASSIFICATION OF MALICIOUS CODE BASED ON BLOCK REORGANIZATION AND DUAL CHANNEL VISUALIZATION

李豪 1钱丽萍 1朱晓慧1
扫码查看

作者信息

  • 1. 北京建筑大学电气与信息工程学院 北京 100044;建筑大数据智能处理方法研究北京市重点实验室 北京 100044
  • 折叠

摘要

针对恶意代码在变种过程中存在许多内联性和相似性,同类恶意家族采用相同或相似的区块标签命名法,现有恶意代码可视化的灰度图像不能全面包含恶意攻击信息,因此提出基于区块重组和双通道的恶意代码可视化分类方法.统计每类家族样本的区块标签分布,找出该类家族的目标标签,重组恶意代码样本的区块数据.将重组后的样本可视化为方阵BR彩色图像,利用高斯核的核主成分分析法对图像进行特征降维,输入多种机器学习分类器中进行训练及分类检测.在标准数据集上的实验结果表明,分类准确率可达到97.00%,稳定性好且有效性高于其他恶意代码检测算法.

Abstract

There are many intrinsic relations and similarities among malicious code variant,and similar malicious families adopt the same or similar block label nomenclature.The existing grayscale image-based visualization of malicious code cannot fully contain malicious attack information.This paper proposes a classification method of malicious code based on block reorganization and dual-channel visualization.It computed the block labels'distribution of each category of family samples,found out the target labels,and reorganized the block data of the malicious code sample.It visualized the reorganized sample as a square matrix BR color image,used Gaussian kernel principal component analysis method to perform feature reduction on the image,and inputted these features into a variety of machine learning classifiers for training and classification.The experimental results on the standard data set show that the classification accuracy rate can reach 97.00%and remains stable.The effectiveness is higher than other malicious code detection algorithms.

关键词

恶意代码分类/区块重组/BR彩色图像/特征降维

Key words

Malicious code classification/Block reorganization/BR corlor image/Feature dimensionality reduction

引用本文复制引用

基金项目

国家自然科学基金项目(61571144)

出版年

2024
计算机应用与软件
上海市计算技术研究所 上海计算机软件技术开发中心

计算机应用与软件

CSTPCD北大核心
影响因子:0.615
ISSN:1000-386X
段落导航相关论文