首页|轻量级网络识别红外图像中电气设备及其热故障

轻量级网络识别红外图像中电气设备及其热故障

扫码查看
提出一种适合边缘计算设备的轻量级卷积神经网络(LightweightES)用于识别热像中的电气设备及其异常发热故障.为达到减少模型参数的同时提升检测精度的目标,对经典SSD进行改造,利用MobileNetV3 轻量级网络作为特征提取骨干网络,快速高效地提取图像特征;引入高效通道注意模块ECA,提高网络的检测精度;采用软池化(SoftPool)方法以减少池化信息损失,提高网络的分类精度.建立并标注含10 516 幅电气设备红外图像的数据集,含电流互感器、避雷器、绝缘子、隔离开关、断路器、套管等 6 种户外变电站设备.实验结果表明:LightweightES算法mAP达93.8%,较SSD提高了7.5 百分点,参数量仅为SSD的1/5,检测帧率达55 FPS,能够实时准确地识别电气设备及其局部温度异常故障,适用于算力有限的智能现场监测终端.
LIGHTWEIGHT NETWORKS APPLIED TO IDENTIFYING ELECTRICAL EQUIPMENT AND THEIR THERMAL FAULTS IN INFRARED IMAGES
A lightweight convolution neural network(LightweightES)for edge computing equipment is proposed to identify electrical equipment and their abnormal heating faults in thermal images.In order to reduce the number of model parameters and improve detection accuracy,the classical SSD was modified as follows.MobileNetV3 lightweight network was used as the backbone network of feature extraction to extract image features efficiently.The efficient channel attention module(ECA)was introduced to improve the detection accuracy of the network.The SoftPool method was used to reduce the loss of the pooling information and improve the classification accuracy.A data set of 10516 labeled infrared images of electrical equipment was established including 6 types of outdoor substation equipment,such as current transformers,arresters,insulators,disconnectors,circuit breakers and drivepipes.The experimental results show that the mAP of LightweightES algorithm reaches 93.8%,which is 7.5 percentage points higher than SSD.The number of parameters is only 1/5 of SSD,while the detection frame rate is up to 55 FPS,which can accurately identify the electrical equipment and local temperature abnormal faults in real time.It is suitable for intelligent field monitoring terminal with limited computing power.

Infrared image of electrical equipmentTarget detectionLightweight networkChannel attentionPooling

张惊雷、李婉欣、赵俊亚、温显斌

展开 >

天津理工大学电气电子工程学院 天津 300384

中国能源建设集团天津电力设计院有限公司 天津 300180

天津理工大学计算机视觉与系统教育部重点实验室 天津 300384

电气设备红外图像 目标检测 轻量级网络 通道注意 池化

2024

计算机应用与软件
上海市计算技术研究所 上海计算机软件技术开发中心

计算机应用与软件

CSTPCD北大核心
影响因子:0.615
ISSN:1000-386X
年,卷(期):2024.41(12)