首页|基于残差网络和注意力机制的夜间航运识别

基于残差网络和注意力机制的夜间航运识别

扫码查看
针对常规的深度学习模型对夜间监控视频进行识别的效果不佳,提出一种基于残差网络和注意力机制的夜间航运事件的识别方法.增强夜间监控视频生成的暗光图像中的光照,采用SE-R2(2+1)模型对增强图像组合成的视频进行识别.该识别模型基于R(2+1)D模型,通过改进模型的激活结构,提升模型的泛化能力.嵌合SENet网络来提高模型的表征能力.实验结果表明,在增强后形成的数据集下,该方法识别准确率达到了88.2%,验证了模型的有效性.
NIGHT SHIPPING IDENTIFICATION BASED ON RESIDUAL NETWORK AND ATTENTION MECHANISM
Aimed at the poor performance of conventional deep learning models in identifying night surveillance videos,a method for identifying night shipping events based on residual network and attention mechanism is proposed.The illumination in the dark image generated by the night surveillance video was enhanced,and the SE-R2(2+1)model was used to identify the video combined by the enhanced image.The recognition model was based on the R(2+1)D model.By improving the activation structure of the model,the generalization ability of the model was improved.At the same time,the SENet network was embedded to improve the characterization ability of the model.Experimental results show that under the enhanced dataset,the recognition accuracy of the proposed method reaches 88.2%,which verifies the effectiveness of the model.

Low-lightNight videoImage enhancementAttention mechanismBehavior recognition

段家家、张鸿

展开 >

武汉科技大学计算机科学与技术学院 湖北 武汉 430065

武汉科技大学智能信息处理与实时工业系统湖北省重点实验室 湖北 武汉 430065

低光照 夜间视频 图像增强 注意力机制 行为分类

2024

计算机应用与软件
上海市计算技术研究所 上海计算机软件技术开发中心

计算机应用与软件

CSTPCD北大核心
影响因子:0.615
ISSN:1000-386X
年,卷(期):2024.41(12)