首页|基于骨架序列的校园斗殴行为检测研究

基于骨架序列的校园斗殴行为检测研究

扫码查看
在校园安全领域,对暴力行为的识别目前主要依靠人工,容易出现疏漏.基于骨架的时空图卷积网络(ST-GCN)行为识别准确率较高,但主要针对单人进行识别.在ST-GCN的基础上,增加多目标跟踪模块,提出针对校园监控视频的暴力行为识别方法.首先使用OpenPose算法得到视频帧中的人体骨架集合,然后用马尔可夫链蒙特卡洛数据关联方法分离出单人骨架序列,分别输入ST-GCN中进行暴力行为识别.在数据集RWF-2000 上的实验结果表明,该方法的识别率达到87.75%,高于其他现有模型.
CAMPUS FIGHTING BEHAVIOR DETECTION BASED ON SKELETON SEQUENCES
In the field of campus security,the identification of violent behaviors currently mainly relies on manual labor,which is prone to omissions.Skeleton-based spatio-temporal graph convolutional network(ST-GCN)has high behavior recognition accuracy,but it is mainly used for single person recognition.This paper proposes a method of identifying violence against campus surveillance video,which adds a multi-target tracking module on the basis of ST-GCN.The OpenPose algorithm was used to obtain the human skeleton set in the video frame,and the single-person skeleton sequence was separated by the Markov chain Monte Carlo data association method and input into ST-GCN for violent behavior recognition.The experimental results on the data set RWF-2000 show that the recognition rate of this method reaches 87.75%,which is higher than other existing models.

Multi-target trackingViolence detectionBehavior recognition

姚砺、王梦珂、万燕

展开 >

东华大学计算机科学与技术学院 上海 201600

多目标跟踪 暴力检测 行为识别

2024

计算机应用与软件
上海市计算技术研究所 上海计算机软件技术开发中心

计算机应用与软件

CSTPCD北大核心
影响因子:0.615
ISSN:1000-386X
年,卷(期):2024.41(12)