计算机应用与软件2024,Vol.41Issue(12) :240-246.DOI:10.3969/j.issn.1000-386x.2024.12.034

基于改进YOLOv5轻量化的车辆目标检测算法

VEHICLE TARGET DETECTION ALGORITHM BASED ON IMPROVED YOLOV5 LIGHTWEIGHT

田栋 魏霞 袁杰
计算机应用与软件2024,Vol.41Issue(12) :240-246.DOI:10.3969/j.issn.1000-386x.2024.12.034

基于改进YOLOv5轻量化的车辆目标检测算法

VEHICLE TARGET DETECTION ALGORITHM BASED ON IMPROVED YOLOV5 LIGHTWEIGHT

田栋 1魏霞 1袁杰1
扫码查看

作者信息

  • 1. 新疆大学电气工程学院 新疆 乌鲁木齐 830047
  • 折叠

摘要

无人驾驶汽车在近年来取得了巨大的进展和突破,环境感知技术作为无人驾驶汽车安全行驶的重要前提,则需要在行驶的过程中提前检测其周围环境,并快速且准确地检测出周围目标.基于此问题,提出基于改进YOLOv5 的目标检测算法.将EfficientNetV2 作为YOLOv5 算法的主干特征提取网络;为了提高算法的收敛性,引入MetaAconC激活函数,并在Head中融合BiFPN,增加图像特征融合的多样性,不仅使算法模型减小了39%,更在精度上也有一定的提高.通过实验验证,相比YOLOv5 原方法,该算法在保证目标检测实时性的同时具有更高的检测精度,且设备兼容性更好.

Abstract

Driverless cars have made tremendous progress and breakthroughs in recent years.As an important prerequisite for driverless cars to drive safely,environmental perception technology needs to detect their surroundings in advance during driving,and quickly and accurately detect the surroundings target.Based on this problem,this paper proposes a target detection algorithm based on improved YOLOv5.EfficientNetV2 was used as the backbone feature extraction network of the YOLOv5 algorithm.In order to improve the convergence of the algorithm,the MetaAconC activation function was introduced,and BiFPN was integrated in the Head,which increased the diversity of image feature fusion,reduced the algorithm model by 39%,and there was also a certain improvement in accuracy.Through experimental verification,compared with the original method of YOLOv5,this algorithm has higher detection accuracy while ensuring real-time target detection,and has better equipment compatibility.

关键词

YOLOv5/MetaAconC/轻量化/特征融合/BiFPN

Key words

YOLOv5/MetaAconC/Lightweight/Feature fusion/BiFPN

引用本文复制引用

出版年

2024
计算机应用与软件
上海市计算技术研究所 上海计算机软件技术开发中心

计算机应用与软件

CSTPCD北大核心
影响因子:0.615
ISSN:1000-386X
段落导航相关论文