首页|基于双向特征金字塔的YOLOv4的改进

基于双向特征金字塔的YOLOv4的改进

扫码查看
为了进一步提高YOLOv4 算法的目标检测精度,提出一种改进算法YOLOv4TB(YOLOv4+Transformer+BiFPN).该算法利用Transformer提取同一特征图上的共同发生的对象特征来进行特征增强,利用BiFPN(Bi-directional Feature Pyramid Network)模型替换PAN模型,解决YOLOv4 中存在的冗余计算和不同特征层贡献度相同的问题.并在此基础上采用Leaky-ReLU激活函数和可分离卷积技术,解决目标检测精度下降和参数量、运算量上升的问题.在PASCAL VOC数据集上实验结果表明,与YOLOv4 相比,YOLOv4TB算法具有较高的检测精度和运行效率,参数数量和运算量有所减少.
IMPROVEMENT OF YOLOV4 BASED ON BIDIRECTIONAL FEATURE PYRAMID
In order to further improve the target detection accuracy of YOLOv4 algorithm,an improved YOLOv4TB(YOLOV4+Transformer+BIFPN)algorithm is proposed.The proposed algorithm used Transformer to extract co-occurring object features on the same feature map for feature enhancement,and replaced the PAN model with BIFPN(bi-directional feature pyramid network)model.The problems of redundant calculation and the same contribution of different feature layers in YOLOv4 were solved.On this basis,the Leaky-ReLU activation function and the separable convolution technology were used to solve the problems of the decreased accuracy of target detection and the increase of the number of parameters and computation.Experimental results on Pascal VOC data sets show that compared with YOLOv4,YOLOv4TB algorithm has higher detection accuracy and operating efficiency,and the number of parameters and computation are reduced.

Object detectionConvolutional neural networkFeature fusionNormalizationTransformer

李鹏翔、邱保志

展开 >

郑州大学信息工程学院 河南 郑州 450001

目标检测 卷积神经网络 特征融合 归一化 Transformer

2024

计算机应用与软件
上海市计算技术研究所 上海计算机软件技术开发中心

计算机应用与软件

CSTPCD北大核心
影响因子:0.615
ISSN:1000-386X
年,卷(期):2024.41(12)