首页|基于双向GRU和CNN的恶意网络流量检测方法

基于双向GRU和CNN的恶意网络流量检测方法

扫码查看
为了解决当前恶意网络流量检测技术存在准确率不足和泛化性较差的问题,提出一种基于双向GRU和CNN的恶意网络流量检测方法,使用双向GRU和CNN并行地提取网络流量数据的时间特征和空间特征,并加入自注意力机制,用于计算特征的重要性.采用CIC-IDS2017 数据集进行实验,结果表明,该检测方法在多分类和二分类的准确率分别达到99.77%和99.82%,均优于其他的检测方法.
MALICIOUS NETWORK TRAFFIC DETECTION METHOD BASED ON BIDIRECTIONAL GRU AND CNN
To solve the problems of insufficient accuracy and poor generalization of current malicious network traffic detection technology,a malicious network traffic detection method based on bidirectional GRU and CNN is proposed.Bidirectional GRU and CNN were used to extract temporal and spatial features of network traffic data in parallel,and self-attention mechanism was added to calculate the importance of features.Experiments were carried out on CIC-IDS2017 dataset.The results show that the accuracy of the detection method in multi-class classification and binary classification are 99.77%and 99.82%respectively,which is superior to other detection methods.

Malicious network traffic detectionGRUCNNData characteristicsSelf-attention mechanism

戚子健、柳毅

展开 >

广东工业大学计算机学院 广东 广州 510006

恶意网络流量检测 门控循环单元 卷积神经网络 数据特征 自注意力机制

2024

计算机应用与软件
上海市计算技术研究所 上海计算机软件技术开发中心

计算机应用与软件

CSTPCD北大核心
影响因子:0.615
ISSN:1000-386X
年,卷(期):2024.41(12)