首页|基于图神经网络的盲道无障碍断点识别方法

基于图神经网络的盲道无障碍断点识别方法

扫码查看
针对既有盲道存在的问题,基于使用者行为和盲道识别特征,通过分类算法的应用,提出一套可行的盲道无障碍断点识别方法:首先,模拟使用者行为,基于图神经网络实现盲道断点分类,并结合盲道及障碍物检测,构建盲道断点智能识别模型;其次,结合规范和统计学方法确定识别对象并构建数据集,根据有监督的机器学习结果优化模型;最后,通过实际案例论证该方法的可行性,并结合城市大脑、"众包"概念,描述该方法应用前景.实验结果显示,该方法较其余分类算法有更高的准确度,实现机器代替人工对盲道问题高效、准确、系统、全自动的识别.
A Method for Accessible Breakpoint Recognition of Tactile Pavement Based on Graph Neural Network
In view of the problems existing in tactile pavement,a feasible tactile paving accessible breakpoint recognition method is proposed through the application of classification algorithm,and based on user behavior and tactile paving recognition characteristics.Firstly,the user's behavior is simulated,and the tactile pavement breakpoint classification is realized based on Graph Neural Network(GNN).Combined with algorithm of object detection,an intelligent recognition model is constructed.Secondly,the object type is clearly identified and the data set is constructed by combining the general codes for accessibility and statistical methods.And the model is optimized according to the supervised machine learning results.Finally,the feasibility and advantages of this method are demonstrated through practical cases,and the application prospect of this method is described in combination with the concept of"Urban Brain"and"Crowdsourcing".The experimental results show that this method has higher accuracy than other classification algorithms,and can realize efficient,accurate,systematic and automatic recognition of tactile pavement problems by machine instead of manual.

accessibility reconstructiontactile pavementaccessible breakpoint recognitiontarget detectiongraph neural network(GNN)multi-label classification

陈子宜、翁奕柔、方琰、伍岳、陆激、周欣

展开 >

浙江大学,浙江 310030

北京大学,北京 100091

浙江大学建筑设计研究院有限公司,浙江 310028

无障碍改造 盲道 无障碍断点识别 目标检测 图神经网络 多标签分类

2024

建设科技
住房和城乡建设部科技发展促进中心

建设科技

影响因子:0.6
ISSN:1671-3915
年,卷(期):2024.(1)
  • 1