首页|基于LSTM循环神经网络的中小学建筑运营维护期间电力碳排放测算方法研究——以瑞安市滨海实验小学为例

基于LSTM循环神经网络的中小学建筑运营维护期间电力碳排放测算方法研究——以瑞安市滨海实验小学为例

扫码查看
本文以瑞安小学为案例,利用LSTM循环神经网络对教学楼建筑的电力碳排放进行预测.通过收集和分析能源消耗数据、建筑特征和环境因素,建立了一个基于LSTM循环神经网络的碳排放预测模型,并将预测结果与SVR算法进行了对比.结果表明,该模型在预测准确性和稳定性上表现出明显优势,为碳排放管理和减排决策提供了可靠依据.这一研究为推动建筑碳减排和可持续发展提供了有益的参考和借鉴.
Research on Measurement Method of Electricity Carbon Emissions during Operation and Maintenance of Primary and Secondary School Buildings based on LSTM Recurrent Neural Network——Case Study of Ruian Binhai Experimental Primary School
This paper uses LSTM recurrent neural network to predict the electricity carbon emissions of a teaching building construction in Ruian Binhai Experimental Primary School.By collecting and analyzing energy consumption data,building characteristics and environmental factors,a carbon emission prediction model is established based on LSTM cycle neural network,and prediction results are compared with the SVR algorithm.The results show that the model has obvious advantages in prediction accuracy and stability,and provides a reliable scientific basis for carbon emission management and emission reduction decisions.This study provides a useful reference for promoting building carbon emission reduction and sustainable development.

carbon emission predictionneural networkprimary and secondary school buildings

诸纪萍、李强、茅建平、李超、邵嘉妍

展开 >

浙江大东吴集团建设有限公司,湖州 313002

湖州职业技术学院,湖州 313099

碳排放预测 神经网络 中小学建筑

浙江省建设厅建设科研项目湖州职业技术学院横向课题

2022K051202HX3025

2024

建设科技
住房和城乡建设部科技发展促进中心

建设科技

影响因子:0.6
ISSN:1671-3915
年,卷(期):2024.(9)
  • 1