首页|基于人工神经网络的建筑负荷预测与空调系统运行优化研究

基于人工神经网络的建筑负荷预测与空调系统运行优化研究

扫码查看
准确预测建筑负荷并合理优化空调系统运行,对于提升空调系统经济性能和能源利用效率具有重要意义.运用人工神经网络建立建筑负荷预测模型,并且考虑不同热区内人员的热舒适需求对建筑负荷预测精度的影响,然后以空调系统运行成本最低为目标,运用遗传算法建立地源热泵和蓄能水箱联供系统的运行优化模型.结果表明,负荷预测模型的CV-RMSE指标降低了15.26%;在负荷预测结果的基础上,运用优化模型实现系统的运行调度可以分别在冬季典型日和夏季典型日节约22.53%和33.69%的运行成本.
Building Load Prediction and HVAC System Operation Optimization based on Artificial Neural Network
Accurate building load prediction and operation optimization of the heating,ventilation and air-conditioning(HVAC)system are important for improving the economic performance and energy efficiency of the HAVC system.The building load prediction model is established by using artificial neural network.Thermal comfort demands of occupants in different thermal zones are considered to improve the prediction accuracy.Aiming at the lowest operation cost of air conditioning system,the operation optimization model of ground source heat pump system combined with thermal storage tank is established by using genetic algorithm.The results show that the CV-RMSE of the prediction model can decrease by 15.26%.Based on the load prediction results,the optimization model realizes that the operation scheduling of the HVAC system can save operation cost by 22.53%and 33.69%on typical winter days and typical summer day,respectively.

artificial neural networkgenetic algorithmbuilding load predictionHVAC operation optimization

胡竞帆

展开 >

中国铁路设计集团有限公司,天津 300308

人工神经网络 遗传算法 建筑负荷预测 空调运行优化

2024

建设科技
住房和城乡建设部科技发展促进中心

建设科技

影响因子:0.6
ISSN:1671-3915
年,卷(期):2024.(13)