首页|基于前馈补偿LQR与PID的矿井无轨胶轮车横纵向控制研究

基于前馈补偿LQR与PID的矿井无轨胶轮车横纵向控制研究

扫码查看
无人驾驶技术是实现无轨胶轮车井下安全、智能、高效运输的重要方案之一,为了提高无人驾驶过程中的轨迹跟踪精度,提出了基于前馈补偿的横向线性二次型调节器(Linear Quadratic Regulator,LQR)与纵向比例积分微分(Proportion Integration Derivative,PID)位移速度调节器相结合的控制策略,实现车辆的横纵向协调控制.通过建立考虑轮胎侧偏特性的 2 自由度无轨胶轮车动力学模型和跟踪误差模型,并采用井下无轨胶轮车实车参数建立其电机模型,得到车辆的驱动制动输出.利用Carsim和Matlab/Simulink搭建联合仿真环境,分别在井下双车道工况、单车道工况与颠簸路面工况下进行了轨迹跟踪仿真验证.结果表明:在 3 种工况下车辆轨迹跟踪过程中的最大横向误差仅为 5 cm,最大纵向误差仅为 10 cm,速度误差控制在 1 m/s以内,航向误差范围为±0.1 rad,前轮偏转角变化平稳未出现抖动现象.为验证控制器在井下实际环境下的跟踪性能,使用实验室小车于陕西某井下巷道进行了现场试验验证,结果表明:井下实际巷道下试验结果误差仍在合理范围内,解决了车辆运行过程中的速度和路径的时变问题,反映出该控制器具有较高的精度和较好的稳定性.
Research on Lateral and Longitudinal Control of Mine Trackless Rubber-tyred Vehicle Based on Feedforward Compensation LQR and PID
Unmanned driving technology is one of the important schemes to realize the safe,intelligent and efficient trans-portation of trackless rubber-tyred vehicles.In order to improve the accuracy of trajectory tracking in the process of unmanned driving,a control strategy based on feedforward compensation is proposed,which combines the lateral linear quadratic optimal controller(LQR)with the longitudinal proportional integral differential(PID)displacement speed regulator to realize the lat-eral and longitudinal coordinated control of the vehicle.By establishing a two-degree-of-freedom trackless rubber-tyred vehicle dynamics model and tracking error model considering tire cornering characteristics,and using the actual vehicle parameters of the underground trackless rubber-tyred vehicle to establish its motor model to obtain the driving and braking output of the vehi-cle.Carsim and Matlab/Simulink are used to build a joint simulation environment,and trajectory tracking simulation verifica-tion is carried out under underground two-lane conditions,single-lane conditions and bumpy road conditions.The simulation re-sults show that the maximum lateral error in the process of vehicle trajectory tracking under three working conditions is only 5 cm,the maximum longitudinal error is only 10 cm,the speed error is controlled within 1 m/s,the heading error range is±0.1 rad,and the front wheel deflection angle changes smoothly without jitter.At the same time,in order to verify the tracking per-formance of the controller in the actual underground environment,a laboratory car was used to conduct field experiments in a underground roadway in Shaanxi.The experimental results show that the error of the experimental results under the actual road-way is still within a reasonable range,the problem of time-varying speed and path during vehicle operation is solved,which re-flects that the controller has high precision and good stability.

trackless rubber-tyred vehicleLQRPIDfeedforward compensationmotor modellateral-longitudinal coordi-nated controlintelligent mine

江松、武露云、付信凯、顾清华、洪勇、章赛、卢才武

展开 >

西安建筑科技大学资源工程学院,陕西 西安 710055

中钢集团马鞍山矿山研究总院股份有限公司,安徽 马鞍山 243000

金属矿山安全与健康国家重点实验室,安徽 马鞍山 243000

中钢集团山东富全矿业有限公司,山东 济宁 272000

展开 >

无轨胶轮车 LQR PID 前馈补偿 电机模型 横纵向协调控制 智能矿山

国家自然科学基金项目陕西省教育厅服务地方专项重点培育项目中国博士后科学基金项目

5210414621JC0242022M722925

2024

金属矿山
中钢集团马鞍山矿山研究院 中国金属学会

金属矿山

CSTPCD北大核心
影响因子:0.935
ISSN:1001-1250
年,卷(期):2024.(1)
  • 16