首页|基于自适应CKF的改进LANDMARC井下定位算法研究

基于自适应CKF的改进LANDMARC井下定位算法研究

扫码查看
在矿山井下进行人员定位时,为解决传统的LANDMARC算法受井下复杂环境影响出现的定位结果精度不高、波动大的问题,提出了一种基于自适应容积卡尔曼滤波(Volumentric Kalman Filtering,CKF)的改进 LAND-MARC井下定位算法.首先,该算法结合传统的LANDMARC定位算法建立井下三维空间模型并求解目标位置状态预估值;其次,利用BP神经网络的泛化映射能力,引入神经元参数对CKF算法进行优化,充分结合BP神经网络迭代式学习和CKF在强非线性系统中保持稳定的特点,提高定位算法的自适应能力;最后,将位置状态预估值作为观测量进行自适应CKF滤波处理,用优化后的结果作为目标位置坐标的真实值输出,提高了井下定位的精准性.试验结果表明:引入自适应CKF进行滤波处理可以大大提高传统LANDMARC定位算法的稳定性,定位偏差分布更为集中,偏差在1 m以下的占90%以上,所提算法的定位偏差在0.612 m以下的标签达到60%,可满足井下复杂动态环境的高稳定性要求,与传统的LANDMARC定位算法和经由HIF滤波的LANDMARC定位算法相比应用于井下定位具有更好的适用性.
Improved LANDMARC Downhole Positioning Algorithm Based on Adaptive CKF
In order to solve the problem of low accuracy and large fluctuation of positioning results caused by the tradi-tional LANDMARC algorithm due to the complex environmental environment of the mine,an improved LANDMARC under-ground positioning algorithm based on adaptive CKF is proposed.Firstly,the algorithm combines the traditional LANDMARC positioning algorithm to establish a downhole three-dimensional spatial model and solve the target location state estimation.Sec-ondly,using the generalization mapping ability of BP neural network,neuronal parameters are introduced to optimize the volu-metric Kalman filter(CKF),which fully combines the characteristics of BP neural network iterative learning and volumetric Kalman filter(CKF)to maintain stability in a strong nonlinear system,and improve the adaptive ability of the positioning algo-rithm.Finally,the location state estimation is used as an observation measurement for adaptive CKF filtering processing,and the optimized result is used as the true value output of the target location coordinates,which improves the accuracy of downhole po-sitioning.The experimental results show that the introduction of adaptive CKF for filtering can greatly improve the stability of the traditional LANDMARC positioning algorithm,and the distribution of localization deviation is more concentrated,and the deviation below 1 m accounts for more than 90%.The positioning deviation of the proposed algorithm reaches 60%for labels below 0.612 m,which can meet the high stability requirements of the complex dynamic environment of downhole,and has bet-ter applicability to downhole positioning compared with the traditional LANDMARC positioning algorithm and the LANDMARC positioning algorithm filtered by HIF.

downhole positioningvolumetric Kalman filteringBP neural networksLANDMARCintelligent mine

苗作华、陈澳光、朱良建、赵成诚、刘代文

展开 >

武汉科技大学资源与环境工程学院,湖北 武汉 430081

冶金矿产资源高效利用与造块湖北省重点实验室,湖北 武汉 430081

井下定位 容积卡尔曼滤波 BP神经网络 LANDMARC 智能矿山

国家自然科学基金项目国家自然科学基金项目教育部产学合作协同育人项目

4107124241971237202102136008

2024

金属矿山
中钢集团马鞍山矿山研究院 中国金属学会

金属矿山

CSTPCD北大核心
影响因子:0.935
ISSN:1001-1250
年,卷(期):2024.(1)
  • 21