首页|基于改进模糊算法的节理分组软件开发

基于改进模糊算法的节理分组软件开发

扫码查看
节理广泛存在于岩体中,其发育情况影响着岩体的稳定及渗流特性.由于节理数量众多,目前对其研究时需进行分组处理.传统的分组方法如依靠玫瑰图、极点等密度图等,无法确定每组节理的具体数据,同时对离散点的分组效果有限.当下使用机器学习的聚类算法也存在选择的聚类数影响分组效果的不足.鉴于此,在MATLAB平台上开发了基于改进模糊聚类算法的节理产状聚类程序(JOCP).JOCP考虑节理的倾向倾角,使用基于聚拢度的模糊聚类算法进行分组,将结果使用Xie-beni指数判断优劣性,最终生成节理分组的最优解.JOCP以原始坐标数据及目标聚类数为输入,以节理产状数据、聚类中心、聚类结果分布图以及有效性指标为输出.将程序用于大连某边坡千条节理数据的分析中,结果证明程序可提高分组确定性,达到分组效果客观准确的目的.此程序可为地质勘探,灾害预测等领域提供技术支持.
Software Development for Grouping Joints Based on Improved Fuzzy Algorithm
Joints are widely present in rock masses,and their development affects the stability and seepage characteristics of the rock masses.Due to the large number of joints,grouping is currently required for their study.Traditional grouping meth-ods,such as relying on rose diagrams and density maps such as poles,cannot determine the specific data of each group of joints and have limited effect on grouping of discrete points.The contemporary clustering algorithm using machine learning also suf-fers from the deficiency that the number of clusters selected affects the grouping effect.In view of this,a joints'orientation clus-tering program(JOCP)based on an improved fuzzy clustering algorithm was developed on the MATLAB platform.JOCP takes the original coordinate data and the target number of clusters as the input,and the nodal yield data,the cluster centers,the dis-tribution of clustering results and the validity index as the output.The program is used in the analysis of a thousand slope nodal data in Dalian,and the results prove that the program can improve the grouping certainty and achieve the objective and accurate grouping effect.This program can provide technical support for geological exploration,disaster prediction and other fields.

rock massnodal groupingcluster analysisprogram developmentimproved fuzzy algorithm

郭怡宁、刘铁新、董自岩、郑洪春、韩鞠、詹必雄

展开 >

大连海事大学交通运输工程学院,辽宁大连 116026

中国长江三峡集团有限公司,北京 100382

中建一局集团建设发展有限公司,北京 100102

岩体 节理分组 聚类分析 程序开发 改进模糊算法

2024

金属矿山
中钢集团马鞍山矿山研究院 中国金属学会

金属矿山

CSTPCD北大核心
影响因子:0.935
ISSN:1001-1250
年,卷(期):2024.(2)
  • 20