首页|四川某锂辉石矿智能预选抛废工艺研究

四川某锂辉石矿智能预选抛废工艺研究

扫码查看
为提高四川某锂辉石矿磨选给矿Li2O品位、降低选矿生产成本,采用图像智能分选机开展了智能预选抛废工艺试验,考察了入选粒度、矿石水洗与否、抛废率、皮带速度和吹喷方式等对分选效果的影响.结果表明:在给矿粒度为 60~10 mm、预先冲洗矿泥、抛废率为 31.88%、皮带速度为 0.5 m/s、采用"正吹"喷吹的条件下,获得了Li2O品位为 1.47%、Li2 O回收率为 96.03%的锂辉石合格矿,仅 3.97%的Li2O损失在废石中;图像分选机分选出的锂辉石合格矿总体呈亮黄色,而废石则呈黑色或白色;XRD结果显示,相较于原矿,锂辉石合格矿的锂辉石相明显增强,而废石中未见锂辉石相.表明智能图像选矿机可有效实现锂辉石和脉石矿物的智能分选,减少磨浮作业处理量,提高入磨料Li2O品位,降低生产成本,减轻浮选药剂的潜在环境危害.
Study on Intelligent Preconcentration and Waste Disposal Technology of a Spodumene Ore in Sichuan Province
In order to improve the Li2 O grade of a spodumene ore for grinding and selection in Sichuan and reduce the cost of beneficiation production,the image intelligent sorting machine was adopted to carry out for intelligent pre-selection waste process test,and study the impact of the conditions of the feed particle size,the ore washing or not,the rate of waste disposal,the speed of the belt and the way of blowing and spraying on the selection effect.The results showed that under the optimal con-ditions of feed size of 60~10 mm,pre-washing of ore sludge,waste disposal rate of 31.88%,belt speed of 0.5 m/s,and"posi-tive blowing"blowing method,a qualified spodumene ore with Li2 O grade of 1.47%and recovery rate of 96.03%was ob-tained,and the loss rate of Li2 O in the waste rock was only 3.97%;Through the intelligent recognition of the image sorting ma-chine,the sorted spodumene qualified ore is bright yellow,while the waste rock is black or white;XRD results showed that com-pared with the original ore,the spodumene qualified ore has obvious spodumene phase,while the spodumene phase in the waste rock basically disappears.The results showed that HPY-SC1600 intelligent image sorter can effectively realize the intelligent sorting of spodumene and vein minerals,reduces the handling capacity of grinding and floating operation,which greatly im-proves the grade of spodumene,lowers the production cost,and reduce the potential environmental hazards of flotation reagents.

spodumeneimage intelligent sorterpre-selection discardingintelligent mineral processingsorting

罗仙平、张燕、何鹏宇、张宏亮、刘子帅、唐学昆、周贺鹏

展开 >

矿冶环境污染防控江西省重点实验室,江西 赣州 341000

江西理工大学资源与环境工程学院,江西 赣州 341000

江西理工大学宜春锂电新能源产业研究院,江西 宜春 336000

赣州好朋友科技有限公司,江西 赣州 341000

展开 >

锂辉石 图像智能分选机 预选抛废 智能选矿 拣选

国家重点研发计划(十四五)江西省重点研发计划

2023YFC390420120214BBG74001

2024

金属矿山
中钢集团马鞍山矿山研究院 中国金属学会

金属矿山

CSTPCD北大核心
影响因子:0.935
ISSN:1001-1250
年,卷(期):2024.(5)
  • 13