首页|基于生成对抗残差学习的矿山远程监控图像去噪算法

基于生成对抗残差学习的矿山远程监控图像去噪算法

扫码查看
在矿山远程监控系统中,由于监控摄像头位置和环境等因素限制,往往会导致图像中存在各种噪声,如椒盐噪声、高斯噪声等,这些噪声会对图像质量产生严重影响,同时也会给后续的图像分析和处理带来很大困难.因此,如何准确地去除噪声,提高图像质量,一直是矿山远程监控系统中的重要问题.生成对抗学习是一种基于对抗生成网络(Generative Adversarial Networks,GAN)的图像处理技术,可以有效去除图像中的噪声.据此,提出了一种基于生成对抗残差学习的矿山远程监控图像去噪算法.该算法首先通过GAN生成器学习得到一组残差图像,然后通过残差学习方式将原始图像与残差图像相加得到去噪后的图像.同时,为提高算法的鲁棒性和适用性,还引入了噪声分布估计网络和自适应控制机制.试验结果表明:该算法可以有效去除矿山远程监控图像中的噪声,并且具有较好的鲁棒性和适用性.
Mine Remote Monitoring Image Denoising Algorithm Based on Generated Residuals Learning
In the remote monitoring system of mine,due to the restrictions of the location and environment of the monito-ring camera,there are often various noises in the image,such as salt and pepper noise,Gaussian noise,etc.,which will have a serious impact on the image quality,but also bring great difficulties to the subsequent image analysis and processing.Therefore,how to accurately remove noise and improve image quality is always an important problem in mine remote monitoring system.Generative adversarial learning is an image processing technique based on Generative Adversarial Networks(GAN),which can effectively remove noise from images.In this paper,a mine remote monitoring image denoising algorithm based on generation re-siduals learning is proposed.The algorithm first learns a group of residual images by GAN generator,and then adds the original image and residual image by the way of residual learning to get the denoised image.At the same time,in order to improve the robustness and applicability of the algorithm,noise distribution estimation network and adaptive control mechanism are intro-duced.The experimental results show that the algorithm can effectively remove the noise in the remote monitoring image of mine,and has good robustness and applicability.

mine remote monitoring imagegenerative adversarial networkresidual learningimage denoising

樊培利、王建军、艾薇

展开 >

山西水利职业技术学院信息工程系,山西 运城 044000

河南理工大学机械与动力工程学院,河南 焦作 454000

黄河水利委员会山西黄河河务局,山西 运城 044000

矿山远程监控图像 生成对抗网络 残差学习 图像去噪

教育部高等学校科技研究发展中心项目

ZJXF2022256

2024

金属矿山
中钢集团马鞍山矿山研究院 中国金属学会

金属矿山

CSTPCD北大核心
影响因子:0.935
ISSN:1001-1250
年,卷(期):2024.(5)
  • 6