首页|基于分段Knothe时间函数的开采沉陷预计模型优化及应用

基于分段Knothe时间函数的开采沉陷预计模型优化及应用

扫码查看
淮南矿区煤层埋深达800~1 200 m,开采影响传播时间长,在使用原始分段Knothe时间函数模型预计该地区地表沉陷动态过程时,存在的不足为:预计的地表沉陷无启动阶段,下沉速度达到最大时对应的地表沉陷值并不等于最大下沉值的 1/2,时间因素影响系数(c)以及地面点最大下沉速度对应的时刻(τ)无法实现自适应取值.通过理论研究以及资料分析,应用地表沉陷启动时间t0 以及修正模型对Knothe时间函数模型进行优化,并结合淮南矿区地质特征以及概率积分模型相关理论构建了c、τ求解模型,提出了适合淮南厚冲积层矿区的分段Knothe时间函数优化模型.以淮南某矿 1613(3)工作面为例,采用所提优化Knothe时间函数模型、原始分段Knothe时间函数模型、分段Knothe时间函数模型分别进行了地表沉陷预测.结果表明:以地表点的实测值作为参考,所提出的优化模型在预计地表形变时,预计标准差为 295.8 mm,总体精度较原始分段Knothe时间函数提高了 49%,较分段Knothe时间函数提高了 53%,证明了所提优化模型的优异性.
Optimization and Application of Mining Subsidence Dynamic Prediction Model Based on Segmented Knothe Time Function
The depth of the coal seam in the Huainan mining area reaches 800~1 200 m,and the propagation time of the mining influence is long.When the original segmented Knothe time function model is used to predict the dynamic process of surface subsidence in this area,there are the following problems:there is no initiation stage of the predicted surface subsid-ence,the surface subsidence value corresponding to the maximum subsidence rate is not equal to 1/2 of the maximum subsid-ence value,and the time-dependent influence coefficient(c)and the moment corresponding to the maximum sinking speed of ground points(τ)are not adaptively valued.Through theoretical research and data analysis,it is proposed to optimize the Knothe time function model by invoking the surface subsidence initiation time t0 and the correction model,and to construct the parameter c and τ solution model by combining the geological characteristics of the Huainan mining area and the relevant theo-ry of the probability integral model,so as to propose the optimization model of the segmented Knothe time function which is suitable for the Huainan thick alluvial layer mining area.Taking the 1613(3)working face of a mine in Huainan as an exam-ple,the optimized Knothe time function model proposed in this paper,the original segmented Knothe time function model and the segmented Knothe time function model are used to predict the surface subsidence.The results show that taking the meas-ured values of the surface points as a reference,the optimised model proposed in this paper has an predicted standard error of 295.8 mm,and the overall accuracy is improved by 49%over the original segmented Knothe time function and by 53%over the segmented Knothe time function,which proves the superiority of the proposed optimised model.

mining subsidenceKnothe time functiondynamic predictionmodel optimizationsubsidence speed

苗伟、安士凯、徐燕飞、薛博、赵得荣、李浩

展开 >

煤矿生态环境保护国家工程实验室,安徽 淮南 232001

安徽省煤矿绿色低碳发展工程研究中心,安徽 合肥 230601

平安煤炭开采工程技术研究院有限责任公司,安徽 淮南 232001

淮南矿业(集团)有限责任公司,安徽 淮南 232001

展开 >

开采沉陷 Knothe时间函数 动态预计 模型优化 沉陷速度

安徽省重点研究与开发计划项目安徽省自然资源厅公益性地质项目

202104a070200142021-g-1-7

2024

金属矿山
中钢集团马鞍山矿山研究院 中国金属学会

金属矿山

CSTPCD北大核心
影响因子:0.935
ISSN:1001-1250
年,卷(期):2024.(6)