首页|尾矿资源化利用制备水泥注浆料的无侧限抗压强度预测

尾矿资源化利用制备水泥注浆料的无侧限抗压强度预测

扫码查看
尾矿资源化利用制备水泥注浆料可实现尾矿的可持续性.为准确预测尾矿资源化利用制备水泥注浆料的无侧限抗压强度,基于K近邻回归、支持向量回归、随机森林、Gradient Boosting(GB)和Light Gradient Boosting Ma-chine(LightGBM)算法,建立了无侧限抗压强度的预测模型.首先,收集了 738 组尾矿资源化利用制备水泥注浆料的无侧限抗压强度的试验数据,建立了无侧限抗压强度数据库,试验参数包括尾矿化学性质、水泥强度、水泥尾矿质量比、质量浓度、养护时间和无侧限抗压强度.随后基于该数据库,建立了K近邻回归、支持向量回归、随机森林、GB和LightGBM模型,选取了 3 个统计指标评估模型性能,并对比模型的精度和误差.结果表明:水泥与尾矿的质量之比与无侧限抗压强度的相关性最大,而在尾矿的化学性质中,二氧化硅含量对无侧限抗压强度的影响最大.在训练集和测试集上,支持向量回归模型的预测性能最好(决定系数R2 分别为 0.99 和 0.98),且约 99%数据的误差在 1 MPa范围之内;GB模型的R2 分别为 0.98 和 0.96,而K近邻回归模型的R2 分别为 0.98 和 0.83.总体而言,支持向量模型的预测性能要优于GB模型、随机森林模型、LightGBM模型和K近邻回归模型,表明支持向量回归模型可准确地预测以及评估尾矿资源化利用制备水泥注浆料的抗压强度.本研究为尾矿在混凝土以及水泥等领域的资源化利用提供了基础.
Prediction of Unconfined Compressive Strength of Cement Grouting Material Made from Tailings Resource Utilization
Tailings of resource utilization for cement grouting material production contributes to the sustainability of tail-ings management.To accurately predict the unconfined compressive strength of cement grouting material made from tailings,predictive models based on the K-nearest neighbors regression,support vector regression,random forest,Gradient Boosting(GB),and Light Gradient Boosting Machine(LightGBM)algorithms were established.Firstly,a database of unconfined com-pressive strength data for cement grouting material made from tailings was compiled,comprising 738 sets of experimental data.The dataset included parameters such as tailings' chemical properties,cement strength,mass ratio of cement to tailings,mass concentration,curing time,and unconfined compressive strength.Subsequently,predictive models using K-nearest neighbors re-gression,support vector regression,random forest,GB,and LightGBM were established based on this database.Three statistical indicators were selected to evaluate model performance,and model accuracy and errors were compared.The results showed that the ratio of cement to tailings mass exhibits the strongest correlation with unconfined compressive strength,while among the chemical properties of tailings,the silicon dioxide content had the most significant impact on unconfined compressive strength.On both the training and testing datasets,the support vector regression model demonstrated the best predictive performance(with R2 values of approximately 0.99 and 0.98,respectively),with around 99%of the data falling within a 1 MPa range of error.The GB model achieved R2 values of 0.98 and 0.96 on the training and testing datasets,respectively,while the K-nearest neighbors regression model had R2 values of 0.98 and 0.83.Overall,the support vector regression model outperformed the GB model,random forest model,LightGBM model,and K-nearest neighbors regression model,indicating its ability to accurately pre-dict and assess the compressive strength of cement grouting material made from tailings.This research provides a foundation for the resourceful utilization of tailings in the fields of concrete and cement,among others.

tailingsresource utilizationchemical propertiescement grouting materialprediction model

耿楠、吴明春、李显、樊亚男

展开 >

山西铁道职业技术学院交通工程系,山西 太原 030013

太原理工大学土木工程学院,山西 太原 030024

中国三峡建工(集团)有限公司,四川 成都 610041

太原学院建筑与环境工程系,山西 太原 030032

展开 >

尾矿 资源化利用 化学性质 水泥注浆料 预测模型

国家自然科学基金项目山西省基础研究计划项目

519115302382023021212359

2024

金属矿山
中钢集团马鞍山矿山研究院 中国金属学会

金属矿山

CSTPCD北大核心
影响因子:0.935
ISSN:1001-1250
年,卷(期):2024.(6)