首页|基于集成学习的铁尾矿取代水泥的强度活性指数预测模型对比研究

基于集成学习的铁尾矿取代水泥的强度活性指数预测模型对比研究

扫码查看
为准确预测铁尾矿取代水泥的强度活性指数(简称铁尾矿强度活性指数),基于试验数据,对不同集成学习方法建立的铁尾矿强度活性指数预测模型的预测性能进行评估,并与其他单一的机器学习预测模型进行对比.预测模型中所考虑的参数有水固比、颗粒尺寸、二氧化硅含量、氧化铁含量、氧化镁含量、氧化铝含量、氧化钙含量、三氧化硫含量、其他化学成分含量和铁尾矿掺量.结果表明:集成学习方法中,极端梯度提升模型的预测性能及精度最好,其次是直方图梯度提升模型、梯度提升模型,均要优于单一的机器学习模型(支持向量机模型和线性回归模型).随机森林模型的预测精度优于线性回归模型,但稍逊于支持向量机模型.在实际应用过程中,可尽量选择含有三氧化硫、氧化铝、氧化镁和氧化铁的铁尾矿,因为相比其他物质,含有此类物质的铁尾矿有益于取代水泥,从而增加铁尾矿的强度活性指数.研究可为铁尾矿在基于水泥基材料领域的应用奠定基础.
Comparative Research on Prediction Model for Strength Activity Index of Iron Tailings Replacing Cement Based on Ensemble Learning
In order to accurately predict the strength activity index of iron tailings replacing cement(referred to as iron tailings strength activity index),based on the experimental data,the prediction performance of iron tailings strength activity in-dex prediction models established by different ensemble learning methods was evaluated,and compared with other single ma-chine learning prediction models.The parameters considered in the prediction model are water-solid ratio,particle size,silica content,iron oxide content,magnesium oxide content,alumina content,calcium oxide content,sulfur trioxide content,other chemical composition content and iron tailings content.The results show that in the ensemble learning method,the extreme gra-dient boosting model has the best prediction performance and accuracy,followed by the histogram gradient boosting model and the gradient boosting model,which are better than the single machine learning model(support vector machine model and linear regression model).The prediction accuracy of the random forest model is better than that of the linear regression model,but slightly inferior to the support vector machine model.In the practical application process,iron tailings containing sulfur triox-ide,alumina,magnesium oxide and iron oxide can be selected as much as possible,because compared with other substances,i-ron tailings containing such substances are beneficial to replace cement,thereby increasing the strength activity index of iron tailings.The research can lay a foundation for the application of iron tailings in the field of cement-based materials.

iron ore tailingsstrength activity indexensemble learningiron tailings dosagegradient boosting model

金家胜

展开 >

乌鲁木齐职业大学应用工程学院,新疆 乌鲁木齐 830002

铁尾矿 强度活性指数 集成学习 铁尾矿掺量 梯度提升模型

国家自然科学基金项目

52078369

2024

金属矿山
中钢集团马鞍山矿山研究院 中国金属学会

金属矿山

CSTPCD北大核心
影响因子:0.935
ISSN:1001-1250
年,卷(期):2024.(6)