首页|不同裂隙几何特征岩石强度智能预测研究

不同裂隙几何特征岩石强度智能预测研究

扫码查看
基于不同裂隙几何特征岩石力学特性试验结果,综合考虑裂隙特征、围压、物理及力学参数之间的相互关系,构建了影响岩石强度特征参量数据库,利用随机森林算法建立了多特征参量影响下岩石强度预测模型,确立了岩石强度与参量的映射关系.结果表明:预测模型测试集和训练集准确率分别为 76%和 85%,岩石强度处于 30~45 MPa的Ⅲ类、46~60 MPa的Ⅳ类预测效果最佳,样本预测准确率为100%;处于16~30 MPa的Ⅱ类预测效果较好,预测准确率为80%;处于0~15 MPa的Ⅰ类预测效果次之,预测准确率为71%.通过联合分布函数得出所选特征参量均具有一定关联性,可由简单物理试验和无损检测获取,且与岩石强度表现出较强的线性关系;模型分类训练计算表明围压和裂隙长度权重值分别为 0.294 和 0.263,是影响岩石强度较为关键的因素,其余参量重要度排序为纵波波速>泊松比>饱和质量>裂隙倾角>干燥质量>裂隙贯穿度>裂隙数量.
Research on Intelligent Prediction of Rock Strength with Different Crack Geometric Characteristics
Based on the experimental results of rock mechanical properties with different crack geometric characteristics,and taking into account the interrelationships between crack characteristics,confining pressure,physical and mechanical param-eters,a database of characteristic parameters affecting rock strength was constructed.A rock strength prediction model under the influence of multiple characteristic parameters was established using the random forest algorithm,and the mapping relation-ship between rock strength and parameters was established.The results show that the accuracy of the experiment and training sets of the prediction model is 76%and 85%,respectively.Class Ⅲ and Class Ⅳ with rock strength ranging from 30~45 MPa and 46~60 MPa have the best prediction performance,with a sample prediction accuracy of 100%;Class Ⅱ prediction at 16~30 MPa has good performance,with a prediction accuracy of 80%;The Class Ⅰ prediction effect at 0~15 MPa takes second place,with a prediction accuracy of 71%.By using the joint distribution function,it can be concluded that the selected feature parameters have a certain degree of correlation,which can be obtained through simple physical experiments and non-destructive testing,and exhibit a strong linear relationship with rock strength;The model classification training calculation shows that the weight values of confining pressure and crack length are 0.294 and 0.263,respectively,which are key factors affecting rock strength.The importance ranking of other parameters is longitudinal wave velocity>Poisson's ratio>saturated mass>crack dip angle>dry mass>crack penetration>crack number.

rockcrack characteristicmechanical propertiesrandom forest algorithmstrength prediction

王娟、吴禄源、袁超

展开 >

西安科技大学理学院,陕西 西安 710054

河南大学土木建筑学院,河南 开封 475001

岩石 裂隙特征 力学特性 随机森林算法 强度预测

国家自然科学基金面上项目陕西省自然科学基金青年项目陕西省教育厅专项基金项目

417723332024JC-YBQN-027323JK0536

2024

金属矿山
中钢集团马鞍山矿山研究院 中国金属学会

金属矿山

CSTPCD北大核心
影响因子:0.935
ISSN:1001-1250
年,卷(期):2024.(8)