首页|基于机器学习的矿井通风数据清洗系统设计

基于机器学习的矿井通风数据清洗系统设计

扫码查看
针对矿山通风系统数据中普遍存在的噪声、异常值和冗余等问题,提出了一种基于机器学习的数据清洗方法,旨在为矿井智能风险预警、通风策略调整和环境管理等决策过程提供可靠数据.构建了一个包含环境监测参数、风机运行参数和安全运营参数等关键参数的数据集,该数据集支持数据清洗算法开发,并且作为评估数据清洗方法的基准.基于构建的数据集,提出了一种综合性的机器学习驱动的数据清洗框架.首先,采用自回归模型对时间序列数据中的缺失值进行估计和填补,该模型能够有效利用数据的时间相关性,提高缺失数据处理的准确性.其次,引入孤立森林算法,通过构建多个随机树来孤立和识别数据点,该模型适合处理高维通风数据中的异常检测问题,能够有效提高异常值的识别率.最后,使用K-均值聚类算法,通过分析数据特征将相似数据点聚合,以减少重复或相似的数据记录.试验结果表明,提出的数据清洗方法有效提高了矿井通风数据质量,为矿井通风管理提供了高质量的数据支持,展现出良好的工程应用价值.
Design of Mine Ventilation Data Cleaning System Based on Machine Learning
In view of the common problems such as noise,outliers and redundancy in mine ventilation system data,a data cleaning method based on machine learning is proposed,aiming to provide reliable information for decision-making processes such as mine intelligent risk warning,ventilation strategy adjustment and environmental management.data.A data set contai-ning key parameters such as environmental monitoring parameters,wind turbine operating parameters,and safe operation pa-rameters was constructed.This data set supports the development of data cleaning algorithms and serves as a benchmark for e-valuating data cleaning methods.Based on the constructed dataset,a comprehensive machine learning-driven data cleaning framework is proposed.Firstly,an autoregressive model is used to estimate and fill missing values in time series data.This mod-el can effectively utilize the time correlation of data and improve the accuracy of missing data processing.Secondly,the isolation forest algorithm is introduced to isolate and identify data points by constructing multiple random trees.This model is suitable for dealing with anomaly detection problems in high-dimensional ventilation data and can effectively improve the recognition rate of outliers.Finally,the K-means clustering algorithm is used to aggregate similar data points by analyzing data characteristics to reduce duplicate or similar data records.Experimental results show that the proposed data cleaning method effectively improves the quality of mine ventilation data,provides high-quality data support for mine ventilation management,and shows good engi-neering application value.

mine ventilationsmart mineventilation systemmachine learningdata cleaning

刘国榜、朱政、方挺

展开 >

南京宝地梅山产城发展有限公司矿业分公司,江苏南京 210041

安徽工业大学电气与信息工程学院,安徽马鞍山 243032

矿井通风 智慧矿山 通风系统 机器学习 数据清洗

国家自然科学基金项目

51007002

2024

金属矿山
中钢集团马鞍山矿山研究院 中国金属学会

金属矿山

CSTPCD北大核心
影响因子:0.935
ISSN:1001-1250
年,卷(期):2024.(9)