首页|基于改进D-S证据理论选择性集成的边坡稳定性评价

基于改进D-S证据理论选择性集成的边坡稳定性评价

扫码查看
针对边坡稳定性预测算法选择困难和单个模型误判风险大的问题,建立了基于改进D-S证据理论选择性集成的边坡稳定性评价方法,为边坡稳定性初步评价提供方法依据.基于边坡稳定性主要影响因素,通过极限平衡法构建了大型边坡稳定性评价数据集.引入基于边界距离最小化的基学习器选择技术,提升选择性集成模型的泛化能力.提出了改进D-S证据理论融合基学习器信息,降低了选择性集成模型决策过程中的不确定性和模糊性,解决了现有边坡稳定性评价模型易误判和结果非一致性问题.仿真试验结果表明:改进D-S证据理论选择性集成方法无需复杂的数值建模与计算迭代过程,可直接客观地评判边坡稳定性状态,并从信息论角度给出边坡失稳概率.对比传统机器学习方法,该方法有效提高了边坡稳定性的预测准确率,同时降低了预测结果的不确定性,实现了速度快、精度高、稳健性好的广域尺度边坡稳定性评价.
Slope Stability Evaluation Based on Selective Ensemble of Improved D-S Evidence Theory
Aiming at the difficulty of selecting slope stability prediction algorithm and the high risk of misjudgment of a single model,a slope stability evaluation method based on the selective ensemble of improved D-S evidence theory is estab-lished to provide a methodological basis for the preliminary evaluation of slope stability.Based on the main influencing factors of slope stability,a large-scale slope stability evaluation dataset was constructed using the limit equilibrium method.Introducing a base learner selection technique based on margin distance minimization to enhance the generalization ability of selective en-semble model.Propose an improved D-S evidence theory to fuse base learner information,reduce uncertainty and fuzziness in the decision-making process of selective ensemble model,and solve the problems of existing slope stability evaluation models that are prone to misjudgment and inconsistent results.The simulation experiment results show that the improved D-S evidence theory selective ensemble method can directly and objectively evaluate the slope stability state without complicated numerical modeling and calculation iteration process,and give the instability probability of slope from the perspective of information theo-ry.Compared with the traditional machine learning method,this method effectively improves the prediction accuracy of slope stability,reduces the uncertainty of the prediction results,and realizes the wide-scale slope stability evaluation with fast speed,high accuracy and good robustness.

slope stabilityD-S evidence theoryensemble learningselective ensembleinstability probability

张化进、吴顺川、李兵磊

展开 >

福州大学紫金地质与矿业学院,福建福州 350108

昆明理工大学国土资源工程学院,云南昆明 650093

边坡稳定性 D-S证据理论 集成学习 选择性集成 失稳概率

"十三五"国家重点研发计划项目云南省创新团队项目

2017YFC0805303202105AE160023

2024

金属矿山
中钢集团马鞍山矿山研究院 中国金属学会

金属矿山

CSTPCD北大核心
影响因子:0.935
ISSN:1001-1250
年,卷(期):2024.(9)