首页|基于GA-PSO混合优化SVR的边坡危岩体稳定性评价模型

基于GA-PSO混合优化SVR的边坡危岩体稳定性评价模型

扫码查看
边坡危岩体稳定性评价是地质灾害防治的重要内容之一.传统的稳定性评价方法在求解复杂非线性问题时存在着精度较低、收敛速度慢等问题,为此,提出了一种基于GA-PSO混合优化支持向量回归(SVR)的边坡危岩体稳定性评价模型.首先,通过采集大量的实测数据和监测数据,建立了边坡危岩体的训练样本集;然后,将SVR算法引入稳定性评价中,利用其非线性映射性能拟合边坡危岩体的稳定性函数.为提高SVR模型的优化能力,将遗传算法(GA)和粒子群优化算法(PSO)相结合,形成了 GA-PSO混合优化算法,并用于求解SVR模型中的优化问题.选取了多个现场实际边坡危岩体工程案例进行了算法测试.结果表明:相对于传统方法,GA-PSO混合优化SVR模型能够准确预测边坡危岩体的稳定性,并且具有较高的精度和较快的收敛速度.
Stability Evaluation Model of Slope Dangerous Rock Mass Based on GA-PSO Hybrid Optimization SVR
The stability evaluation of dangerous rock mass of slope is one of the important contents of geological hazard prevention.The traditional stability evaluation methods have low accuracy and slow convergence rate when solving complex non-linear problems.Therefore,a stability evaluation model of slope dangerous rock mass based on GA-PSO hybrid optimization support vector regression(SVR)is proposed.Firstly,a training sample set of slope dangerous rock mass is established by col-lecting a lot of measured data and monitoring data.Then,the SVR algorithm is introduced into the stability evaluation,and its nonlinear mapping performance is used to fit the stability function of the dangerous rock mass of the slope.In order to improve the optimization ability of SVR model,GA-PSO hybrid optimization algorithm is formed by combining genetic algorithm(GA)and particle swarm optimization algorithm(PSO),and is used to solve the optimization problems in SVR model.A number of practical engineering cases of dangerous rock slope are selected to test the algorithm.The results show that compared with the traditional method,the GA-PSO hybrid optimization SVR model can accurately predict the stability of dangerous rock mass of slope,and has higher accuracy and faster convergence speed.

slope dangerous rock massstability evaluationsupport vector regression algorithmgenetic algorithmswarm optimization algorithm

庞俊勇、刘俊、郑靓婧、李瑶鹤、苏红艳

展开 >

咸宁职业技术学院建筑学院,湖北咸宁 437000

湖北科技学院资源环境科学与工程学院,湖北咸宁 437000

鹤壁职业技术学院建筑设计与工程学院,河南鹤壁 458030

边坡危岩体 稳定性评价 支持向量机回归算法 遗传算法 粒子群优化算法

湖北省教育厅科研计划项目河南省2022年科技攻关项目

HBZJ2023150202102320373

2024

金属矿山
中钢集团马鞍山矿山研究院 中国金属学会

金属矿山

CSTPCD北大核心
影响因子:0.935
ISSN:1001-1250
年,卷(期):2024.(9)