首页|基于D-InSAR技术的矿区地表沉降规律分析与趋势预测

基于D-InSAR技术的矿区地表沉降规律分析与趋势预测

扫码查看
井工煤矿开采会导致地表沉陷,损坏地表建筑物、影响生态环境,甚至诱发滑坡、泥石流等灾害,对地表沉陷发展规律的准确分析和预测具有重要的现实意义.以东滩煤矿 6306 工作面为试验对象,选取覆盖该区域的 19景Sentinel-1A影像数据,开展了基于D-InSAR技术的地表沉降规律分析与预测研究.基于"二轨法"获取了试验区域的时间序列数据,构建了SAR影像数据分析方法与处理流程;结合矿区实测数据和Sentinal-1A影像数据,验证分析了6306 工作面对应的地表沉降规律;构建了基于 LSTM 算法的地表沉降预测模型,对比分析了 LSTM、SVR 和灰色GM(1,1)3 种方法预测的准确性和有效性.结果表明:D-InSAR技术的监测精度高(最大误差为 18.3 mm,平均差值为 5.4 mm),区域广,可有效获取地表形变的时空演化规律;此外,相较于传统SVR、灰色GM(1,1)预测模型,所提出的LSTM模型平均误差约为 2.98 mm,具有更高精度.
Analysis and Trend Prediction of Surface Subsidence Patterns in Mining Areas Using D-InSAR Technology
Coal mining can cause surface subsidence,damage surface buildings,affect ecological environment,and even induce landslides,debris flows and other disasters,so it is of great practical significance to accurately analyze and predict the development law of surface subsidence.Taking 6306 working face of Dongtan Coal Mine as the test object,19 Sentinel-1A im-age data covering the area were selected to carry out the analysis and prediction of surface subsidence law based on D-InSAR technology.The main contents include:the time series data of the test area is obtained based on the"two-track method",and the analysis method and processing flow of SAR image data are constructed;Combined with the measured data of mining area and Sentinal-1A image data,the corresponding surface settlement law of 6306 working face is verified and analyzed.The accu-racy and effectiveness of LSTM,SVR and grey GM(1,1)methods were compared and analyzed.The results show that the D-In-SAR technique has high monitoring accuracy(maximum error is 18.3 mm,average difference is 5.4 mm)and wide area,and can effectively obtain the spatio-temporal evolution of surface deformation.In addition,compared with the traditional SVR and grey GM(1,1)prediction model,the average error of the proposed LSTM model is about 2.98 mm,which has higher accuracy.

mining subsidenceD-InSARLSTMlevel monitoringtrend prediction

朱权洁、谷雷、刘晓云、尹永明、朱斯陶

展开 >

华北科技学院应急技术与管理学院,河北 三河 065201

华北科技学院矿山安全学院,河北 三河 065201

武汉科技大学资源与环境工程学院,湖北 武汉 430081

中国安全生产科学研究院,北京 100012

北京科技大学土木与资源工程学院,北京 100083

展开 >

开采沉陷 D-InSAR LSTM 水准监测 趋势预测

2024

金属矿山
中钢集团马鞍山矿山研究院 中国金属学会

金属矿山

CSTPCD北大核心
影响因子:0.935
ISSN:1001-1250
年,卷(期):2024.(11)