首页|一种基于分段加权赋参的厚松散层矿区沉陷预计方法

一种基于分段加权赋参的厚松散层矿区沉陷预计方法

扫码查看
概率积分法作为一种通用的采煤沉陷预计方法,在厚松散层矿区应用中存在边缘收敛过快、沉陷预计失准等问题,给厚松散层矿区"三下"采煤及环境保护带来了一定的困难.为此,在概率积分法基础上提出了一种基于分段加权赋参的厚松散层矿区沉陷预计方法,将监测点根据工作面位置划分为内、外 2 个区段,分别获取相应预计参数,利用建立的自适应赋权模型对其预计结果进行加权组合;在此基础上,为提升参数反演精度,分别基于标准粒子群算法和自适应模拟退火粒子群算法进行参数反演研究;同时,为提升赋权模型性能,建立了 2 种自适应赋权模型进行模型优选.试验结果表明:与概率积分法相比,基于分段加权赋参的沉陷预计方法计算的下沉预计值与实测数据更接近,2 种赋权模型计算结果的残差平方和分别为 0.007 1 m2、0.005 8 m2,小于概率积分法的0.020 3 m2;2 种赋权函数模型相比,模型 2 精度更高、效果更好;相同条件下,自适应模拟退火粒子群算法精度优于标准粒子群算法.试验结果验证了矿区分区段预计的可行性,反映出该方法能够有效解决概率积分法在厚松散层矿区应用中边缘收敛过快的问题,对厚松散层矿区的沉陷预计有一定的参考意义.
A Method for Predicting Subsidence in Thick Loose Layer Mines Based on Segmental Weighted Parameter Assignment
As a generalized subsidence prediction method for coal mining,the probability integral method has the prob-lems of too fast edge convergence and inaccurate subsidence prediction in the application of thick loose bed mining area,which brings certain difficulties to the"three downs"coal mining and environmental protection in thick loose bed mining area.To ad-dress this,Based on the probability integral method,this paper proposes a subsidence estimation method for thick loose layer mining area based on segmented weighted assignment,the monitoring points are divided into 2 sections,inner and outer,accord-ing to the location of the working face,obtaining the corresponding estimation parameters,establishing adaptive assignment function models to weight the combination of the estimation results.On this basis,in order to improve the accuracy of parameter inversion,parameter inversion research is carried out based on the standard particle swarm algorithm and the adaptive simulated annealing particle swarm algorithm,respectively.At the same time,in order to improve the performance of the assignment mod-els,two kinds of adaptive assignment models are established to carry out the model optimization.The test results show that:compared with the probability integral method,the subsidence prediction value calculated by the method for predicting subsid-ence in thick loose layer mines based on segmental weighted parameter assignment is closer to the measured data,and the re-sidual sum of squares of the two assignment models are 0.007 1 m2 and 0.005 8 m2,which are smaller than that of the proba-bility integral method(0.020 3 m2);compared with the two kinds of assignment function models,the model two is more accu-rate and more effective;under the same conditions,the accuracy of the adaptive simulated annealing particle swarm algorithm is higher than that of the standard particle swarm algorithm.This paper verifies the feasibility of the mining area zoning section prediction,confirms that the method can effectively solve the problem that the edge convergence is too fast in the application of probability integral method in the thick loose layer mining area,and has certain reference significance to the subsidence predic-tion of the thick loose layer mining area.

mining subsidencethick loose layerprobabilistic integral methodparameter inversiondivisional segment forecastparticle swarm algorithm

孙志豪、徐良骥、刘潇鹏

展开 >

安徽理工大学空间信息与测绘工程学院,安徽 淮南 232001

深部煤矿采动响应与灾害防控国家重点实验室,安徽 淮南 232001

矿山采动灾害空天地协同监测与预警安徽普通高校重点实验室,安徽 淮南 232001

矿山环境与灾害协同监测煤炭行业工程研究中心,安徽 淮南 232001

合肥综合性国家科学中心能源研究院,安徽 合肥 230031

展开 >

开采沉陷 厚松散层 概率积分法 参数反演 分区段预计 粒子群算法

2024

金属矿山
中钢集团马鞍山矿山研究院 中国金属学会

金属矿山

CSTPCD北大核心
影响因子:0.935
ISSN:1001-1250
年,卷(期):2024.(11)