首页|基于多视觉传感器的矿井移动机器人目标定位模型研究

基于多视觉传感器的矿井移动机器人目标定位模型研究

扫码查看
矿井作业环境具有复杂性和危险性,很大程度上降低了井下移动机器人的定位精度,为此提出了一种基于多视觉传感器的矿井移动机器人目标定位模型.首先,设计了一个包含多个相机和深度传感器的传感器系统,以获取丰富的环境信息.这些传感器通过与移动机器人协同工作,可以提供准确的三维场景感知能力.其次,提出了一种基于深度学习的目标检测和识别算法.通过训练一个区域深度卷积神经网络,可以从传感器获取的图像数据中准确地检测和识别井下的目标物体,如设备、人员等.然后,发展了一种融合定位算法,将传感器获取的视觉信息与机器人的运动模型相结合,实现移动机器人在井下的精准定位.该算法能够根据传感器数据和机器人的运动信息,实时更新机器人的位置和姿态,从而达到精确定位的目标.在实际矿井环境中对所提定位模型的有效性和鲁棒性进行了试验验证,结果表明:该模型能够在复杂且危险的井下环境中准确定位目标物体,为井下移动机器人安全和高效运行提供了可靠支持.
Research on Target Location Model of Mine Mobile Robot Based on Multi-vision Sensor
The operating environment of mine is complicated and dangerous,which greatly reduces the positioning accu-racy of underground mobile robot,therefore,the target location model of mine mobile robot based on multiple vision sensors is proposed.Firstly,a sensor system containing multiple cameras and depth sensors is designed to obtain rich environmental infor-mation.These sensors,by working in conjunction with mobile robots,can provide accurate three-dimensional scene perception.Secondly,an object detection and recognition algorithm based on deep learning is proposed.By training a regional deep convo-lutional neural network,it can accurately detect and identify downhole target objects,such as equipment and personnel,from the image data obtained by the sensor.Finally,a fusion positioning algorithm is developed,which combines the visual information obtained by the sensor with the robot's motion model to realize the accurate positioning of the mobile robot in the coal mine.The algorithm can update the position and attitude of the robot in real time according to the sensor data and the motion informa-tion of the robot,so as to achieve the goal of accurate positioning.The validity and robustness of the proposed positioning model are verified by experiments in actual mine environment.The experimental results show that the model can accurately locate the target object in the complex and dangerous coal mine environment,and provide reliable support for the safe and efficient opera-tion of the underground mobile robot.

mine mobile robotmulti-vision sensortarget positioningfusion positioning

孙逍远、薄煜明

展开 >

南京理工大学自动化学院,江苏 南京 210000

矿井移动机器人 多视觉传感器 目标定位 融合定位

2024

金属矿山
中钢集团马鞍山矿山研究院 中国金属学会

金属矿山

CSTPCD北大核心
影响因子:0.935
ISSN:1001-1250
年,卷(期):2024.(11)