首页|顾及扫描线分布特征的地铁隧道移动扫描点云超分辨率方法

顾及扫描线分布特征的地铁隧道移动扫描点云超分辨率方法

扫码查看
基于深度学习的隧道点云超分辨率技术能够将稀疏点云进行上采样,获得更加真实、丰富的物体点云信息,为高精度的三维重建、病害识别提供数据基础.基于"插值生成点云+深度学习位置优化"的思想,提出了一种基于扫描线分布特征的地铁隧道移动扫描点云超分辨率模型和方法.应用扩张K近邻采样原理,改善了生成的插值点云空间分布.设计了融合扫描线空间分布特征的点云位置优化深度学习网络模型.在点距离特征提取过程中融合了扫描线空间分布特征,增强了网络模型对点云扫描线分布特征的感知与利用能力,从而改善地铁隧道移动扫描点云超分辨率处理效果.利用南京某地铁隧道实测点云数据制作点云超分辨率数据集,对所提模型进行了验证.结果表明:测试数据集的超分辨率结果 CD 值达到 3.72,HD 值达到 50.57,相比经典的 Grad-PU 模型分别降低了19.31%和 14.22%,对于低分辨率点云中扫描线间隙较大、点云密度不均匀的区域,能够取得更加均匀且准确的超分辨率处理结果.
Subway Tunnel Mobile Laser Scanning Point Cloud Upsampling Method Based on the Distribution Characteristics of Scan Lines
The tunnel point cloud upsampling algorithm based on deep learning can upsample sparse point clouds to ob-tain more realistic and richer object point cloud information.This can provide a data foundation for high-precision 3D recon-struction and disease identification.Based on the concept of"interpolation-generated point clouds and deep learning position optimization",this paper proposes a point cloud upsampling method for mobile scanning point clouds of subway tunnels based on the distribution characteristics of scan lines(DCSI).The application of K-nearest neighbor sampling principle improves the spatial distribution of the generated interpolated point cloud.A point cloud position optimization deep learning network model is designed that integrates the spatial distribution characteristics of scanning lines.In the process of extracting point distance fea-tures,the spatial distribution characteristics of scanning lines are integrated to enhance the network model's perception and uti-lization ability of point cloud scanning line distribution characteristics,and improve the effect of super-resolution processing of subway tunnel mobile scanning point clouds.A point cloud super-resolution dataset was created with real point cloud data from a subway tunnel in Nanjing to validate the model proposed in this paper.The experimental results of point cloud upsampling in-dicate that the CD value reached 3.72 and the HD value reached 50.57,which were 19.31%and 14.22%lower than Grad-PU model,respectively.For regions with large scan line gaps and uneven point cloud density in low resolution point clouds,more u-niform and accurate super-resolution processing results can be obtained.

point cloud upsamplingsubway tunnelmobile laser scanningGrad-PU

张家文、梁嘉辉、张秋昭、段伟、张开坤

展开 >

中煤江苏勘测设计研究院有限公司,江苏 无锡 214000

中国矿业大学环境与测绘学院,江苏 徐州 221116

南京市测绘勘察研究院股份有限公司,江苏 南京 210019

点云超分辨率 地铁隧道 移动激光扫描 Grad-PU

2024

金属矿山
中钢集团马鞍山矿山研究院 中国金属学会

金属矿山

CSTPCD北大核心
影响因子:0.935
ISSN:1001-1250
年,卷(期):2024.(12)