首页|一种用于层状结构模型的先进计算方法

一种用于层状结构模型的先进计算方法

扫码查看
提出一种针对层状结构模型的先进计算方法.研究的层状结构通常为水平层状板或者层状半空间,结构由横观各向同性(TI)材料组成,材料对称轴指向分层方向.本文方法可以考虑材料的多场耦合特性,即热弹性、多孔弹性和磁电弹性耦合.基于最近提出的傅立叶-贝塞尔级数(FBS)向量函数系和双变量/位置(DVP)方法,建立了本文的先进计算方法.DVP能够无条件稳定地将层矩阵从一层传播到下一层.FBS向量函数系具有以下特点,(1)反映了具有明确类型的广义变形/波,(2)将展开系数预先计算为Love数,然后将其用于涉及问题的模拟.层状地球中的断层(或位错)作用、土-结构相互作用以及近地表地球剖面中的瞬态波等三个典型算例,证明了提出方法的准确性和有效性.
An advanced computational approach for layered structure modeling
In this paper,we present an advanced computational approach for modeling layered structures.The structures can be horizontally layered plates or layered half-spaces.The materials can be multi-field coupled,i.e.,thermoelastic,poroelastic,and magnetoelectroelastic coupled,but require that they are transversely isotropic(TI)with material symmetry axis along the layering direction.This advanced approach is based on the recently constructed Fourier-Bessel series(FBS)system of vector functions and the dual-variable and position(DVP)method.While the DVP is for propagating the layer matrix from one layer to the next with unconditional stability,the FBS vector system is to 1)represent the general deformations/waves with distinguished deformation/wave types,and 2)pre-calculate the expansion coefficients as Love numbers and then use them later for massive simulation of the involved problem.Three typical examples are presented to demonstrate the accuracy and efficiency,as compared with the existing approaches.These are:faulting(or dislocation)in a layered earth,soil-structure interaction,and transient wave propagation in a near-surface earth profile.

layered mediatransverse isotropyFourier-Bessel series systemdual-variable and position methodmulti-field couplingLove number

潘爾年、周江存、林志平、张智卿

展开 >

阳明交通大学土木工程系防灾与水环境研究中心,新竹300

中国科学院精密测量科学与技术创新研究院,武汉 430077

温州理工学院建筑与能源工程学院,温州 325035

分层介质 横向各向同性 傅立叶-贝赛尔级数系统 双变量位置法 多场耦合 勒夫数

台湾科学与技术委员会资助项目湖北珞珈实验室开放基金台湾科学与技术委员会资助项目国家自然科学基金

NSTC 111-2811-E-A49-534220100033MOST 110-2625-M-A49-00452178367

2024

计算力学学报
大连理工大学 中国力学学会

计算力学学报

CSTPCD北大核心
影响因子:0.491
ISSN:1007-4708
年,卷(期):2024.41(1)
  • 36