Natural convection and heat transfer of viscoelastic nanofluid on a vertical plate
Based on the fractional Maxwell model and fractional Fourier law,the governing equations of unsteady two-dimensional boundary layer natural convection and heat transfer of viscoelastic nanofluid on a vertical plate are constructed.Numerical results are obtained by using the finite difference method and L1 algorithm.The trends of velocity,temperature,average skin friction coefficient and average Nusselt number under different physical parameters are graphically analyzed.Results show that both the velocity and temperature boundary layer exhibit a short-term memory and delay characteristics.The velocity's fractional derivative parameter decelerates the natural convection,while the velocity relaxation time has the opposite effect.The temperature's fractional derivative parameter weakens the natural convection and heat conduction,while the opposite influence is observed for the temperature relaxation time.