首页|基于NDVI的福州市植被覆盖时空变化及驱动因素分析

基于NDVI的福州市植被覆盖时空变化及驱动因素分析

扫码查看
基于 2000 年、2009 年和 2020 年的Landsat遥感影像反演归一化植被指数(NDVI),从空间和时间 2 个维度分析了福州市近 20a的植被覆盖变化,利用空间自相关分析工具揭示了福州市NDVI的空间分布模式和聚类格局,采用GWR模型探究了福州市植被覆盖的驱动机制.结果表明:较低的NDVI主要分布在福州市区、东部沿海区域及闽清县和连江县的丘陵地带.在 2 个研究时期,退化的面积略大于改善的面积,说明研究区的植被覆盖在降低.在 1 000 m×1 000 m尺度下,NDVI的空间聚类以高-高聚集和低-低聚集为主,低-低聚集主要分布在福州市区和东部沿海区域,高-高聚集主要分布在距离各区县行政中心较远的高山和丘陵地带.GWR模型能够很好地揭示高程和坡度因子对福州市植被覆盖的驱动机制,海拔越高,坡度越大,植被覆盖越好.
Analysis of spatio-temporal changes and driving factors of vegetation cover in Fuzhou City based on NDVI
Based on Landsat remote sensing images from 2000,2009,and 2020,the normalized difference vegetation index(NDVI)was retrieved to analyze the vegetation cover changes in Fuzhou City in the past 20 years from both spatial and temporal perspectives.The spatial autocorrelation analysis tool was used to reveal the spatial distribution pattern and cluste-ring pattern of NDVI in Fuzhou City,and the GWR model was used to explore the driving mechanism of vegetation cover in Fuzhou City.The results indicate that the lower NDVI is mainly distributed in the urban area of Fuzhou,the eastern coastal area,and the hilly areas of Minqing County and Lianjiang County.During the two study periods,the area of degradation was slightly larger than the area of improvement,indicating a decrease in vegetation cover in the study area.At the 1 000 m×1 000 m scale,the spatial clustering of NDVI is mainly composed of high-high clustering and low-low clustering.low-low clustering is mainly distributed in the urban area of Fuzhou and the eastern coastal area,while high-high clustering is main-ly distributed in high mountains and hilly areas far from the administrative centers of various districts and counties.The GWR model can effectively reveal the driving mechanism of elevation and slope factors on vegetation coverage in Fuzhou City.The higher the altitude and slope,the better the vegetation coverage.

NDVIFuzhou CityVegetation coverageSpatial autocorrelationGWR model

林芳冰

展开 >

漳州市龙文环境监测站,福建 漳州 363000

NDVI 福州市 植被覆盖 空间自相关 GWR模型

2024

江苏林业科技
江苏省林业科学研究院 江苏省林业科技情报中心

江苏林业科技

影响因子:0.461
ISSN:1001-7380
年,卷(期):2024.51(1)
  • 10