首页|基于Sentinel-2影像的果树提取方法及其空间分析研究——以甘肃省平凉市为例

基于Sentinel-2影像的果树提取方法及其空间分析研究——以甘肃省平凉市为例

扫码查看
利用遥感技术对果园进行快速监测,准确掌握苹果园地面积与空间种植分布状况,有助于促进当地经济的发展.目前针对丘陵区果园提取的研究较少,相关方法的有效性和可靠性仍然存在问题.以甘肃省平凉市为研究区域,采用NDVI,RVI,EVI,SIPI,LSWI,NDWI等指标对输入数据进行增强,通过基于数据增强的梯度提升树算法提取研究区苹果种植面积.为验证该方法的有效性,引入最小距离法、CART决策树法、支持向量机法和随机森林 4种机器学习算法进行对比分析,结果表明,梯度提升树算法分类精度最高,总体分类精度(Overall Accuracy,OA)达到 89.3%,Kappa系数为 0.77,分类效果及一致性均最佳.此外,采用基于数据增强的梯度提升树法分别对 2019-2023 年的苹果园进行提取,获得平凉市苹果园种植变化情况,各区县苹果园种植面积除泾川县外整体呈现上升趋势,泾川县和静宁县种植面积最大,其次为庄浪县、灵台县和崆峒区,最小的为崇信县和华亭市.
Apple tree extraction and spatial analysis based on Sentinel-2 Image——A case study of Pingliang,Gansu Province
Using remote sensing technology to quickly monitor orchards and accurately grasp the area and spatial distribution of apple orchards can help promote local economic development.At present,there is relatively little research on the extrac-tion of orchards in hilly areas,and the effectiveness and reliability of related methods were still controversial.Taking Pingli-ang City,Gansu Province as the research area,such indicators as NDVI,RVI,EVI,SIPI,LSWI,and NDWI were used to enhance the input data.The gradient boosting tree algorithm based on data augmentation was used to extract the orchard planting area in the research area.To verify the effectiveness of the method proposed in this article,four machine learning algorithms,namely the minimum distance method,CART decision tree method,support vector machine method,and ran-dom forest method,were introduced for comparative analysis.The classification results showed that the gradient boosting tree algorithm had the highest classification accuracy,with an overall classification accuracy(OA)of 89.3%and a Kappa coefficient of 0.77.The classification performance and consistency were the best.In addition,the gradient boosting tree method based on data augmentation was used to extract the changes in orchard planting in Pingliang City from 2019 to 2023.The planting area of orchards in each district and county shows an overall upward trend,except for Jingchuan County.Jing-chuan County and Jingning County have the largest planting area,followed by Zhuanglang County,Lingtai County,and Kongtong District,and the smallest are Chongxin County and Huating City.

Remote sensingGradient boosting treeData augmentationSentinel-2 remote sensing imageKappa coeffi-ciencePingliang City

柳涛、盖艾鸿、赵鹏伟、刘桦、鲁聪聪、李莺莺

展开 >

甘肃农业大学资源与环境学院,甘肃 兰州 730070

遥感 梯度提升树 数据增强 Sentinel-2影像 Kappa系数 平凉市

甘肃农业大学科技创新基金农业资源与环境一级学科开放基金国家自然科学基金

GAU-XKJS-2018-21642075120

2024

江苏林业科技
江苏省林业科学研究院 江苏省林业科技情报中心

江苏林业科技

影响因子:0.461
ISSN:1001-7380
年,卷(期):2024.51(3)