首页|基于YOLO v5的水稻害虫分类

基于YOLO v5的水稻害虫分类

扫码查看
针对水稻害虫识别过程中存在的检测难度大、模型精度低、计算量大等问题,以稻纵卷叶螟等14类水稻害虫为研究对象,改进了 YOLO v5检测算法,引入高效通道注意力机制(efficient channel attention,ECA)与EIoU(efficient-IoU)损失函数,并结合Ghost卷积,提出了一种基于改进的YOLO v5水稻害虫识别方法:(1)通过引入ECA注意力机制实现对水稻害虫识别过程中重要信息的处理,采用跨通道信息交互,保证模型性能和降低复杂度;(2)引入EIoU损失函数代替CIoU(complete-IoU)损失函数,从而降低原有CIoU损失函数存在的回归精度问题;(3)利用Ghost卷积替换CBS模块及C3模块中的标准卷积,实现模型轻量化处理.结果表明,改进后的模型较原始YOLO v5模型精度略微提升,参数量减少,模型体积降低至7.38 MB,较原模型减少了 46%,与YOLO v7、Faster-RCNN模型相比,mAP比YOLO v7高1.49百分点,比Faster-RCNN高12.89百分点,且本研究模型体积最小,检测速度满足实时性要求,使水稻害虫检测识别能够更加高效地完成,为水稻害虫检测提供了一种更优的方法,对于防治水稻害虫有重要意义.

李滨、樊健

展开 >

东北林业大学机电工程学院,黑龙江哈尔滨 150040

水稻 害虫 深度学习 Ghost卷积 YOLO v5 轻量化 ECA注意力机制

黑龙江省哈尔滨市应用技术研究与开发项目(留学回国创业人才)(A类)

2017RALXJ011

2024

江苏农业科学
江苏省农业科学院

江苏农业科学

CSTPCD北大核心
影响因子:0.732
ISSN:1002-1302
年,卷(期):2024.52(2)
  • 22