首页|基于改进FixMatch算法的半监督番茄病虫害识别

基于改进FixMatch算法的半监督番茄病虫害识别

扫码查看
为了快速准确地识别番茄叶片病虫害,从而提升番茄产量和品质,在有限设备资源条件下实现番茄病虫害的精准防治,针对以往番茄病虫害识别算法数据标注成本过高的问题,提出一种基于改进FixMatch算法的半监督番茄病害图像识别方法.首先,对真实场景采集的番茄病虫害数据进行深入分析,挖掘出数据集规模不明、类间数据不均衡性较为严重的特性,在原始FixMatch算法的基础上,引入k-means聚类算法筛选出代表性数据进行标注,以提高标注数据的性价比.其次,设计一种自适应伪标签数据补充模块,使得在半监督分类算法迭代过程中,自适应地调整不同类别的伪标签判定阈值,并且引入Focal Loss,以保证模型免受类别不均衡的影响.试验结果表明,在kaggle提供的公开数据集New Plant Diseases Dataset的10种番茄病害上,本研究提出的半监督番茄病虫害识别算法仅使用2 000张(约训练数据的10%)的标注数据进行模型训练,在测试集上的准确率可达到98.16%,比原始FixMatch算法提高了 1.34百分点.经过对比试验表明,本研究提出的基于k-means聚类算法的代表数据预选模块比随机挑选的准确率提高23.92百分点,基于自适应阈值截断的伪标签判断模块在困难样本类别上比原始FixMatch算法高出5.00百分点.综上所述,本研究所提出的基于改进FixMatch算法的半监督番茄病虫害识别算法能够提高半监督图像识别任务的准确率,对于真实场景下如何挑选数据标注以及如何制定训练过程中的伪标签监督策略都有着积极的参考意义,降低了番茄病虫害识别模型的数据标注成本,助力智慧农业发展.

严露露、朱赞彬、冯世杰、龚守富、程浈浈

展开 >

信阳农林学院,河南信阳 464000

番茄 病虫害 改进FixMatch算法 半监督学习 图像分类

2024

江苏农业科学
江苏省农业科学院

江苏农业科学

CSTPCD北大核心
影响因子:0.732
ISSN:1002-1302
年,卷(期):2024.52(20)