首页|机器学习用于城镇污水处理厂进水预测的实践研究

机器学习用于城镇污水处理厂进水预测的实践研究

扫码查看
通过分析比较不同的污水处理厂进水预测方法,并对影响进水情况的有关因素进行相关性分析,采用基于机器学习的BP神经网络模型来预测污水处理厂的日进水量及化学需氧量.利用位于国内南方和北方的两个典型污水处理厂的实际运行数据进行试验,结果显示该模型预测精度良好,与实际数据偏差保持在 5%以内.
Research on daily inflow prediction of urban sewage treatment plant by machine learning
This poses higher requirements for the refined operation of urban wastewater treat-ment plants.This study analyzes and compares different methods for predicting influent flow rates in wastewater plants,conducts correlation analysis on factors affecting influent conditions,and em-ploys a machine learning-based BP neural network model to predict the daily influent flow rates and chemical oxygen demand(COD)of wastewater plants.Utilizing operational data from two typical wastewater treatment plants located in the southern and northern regions of China,the results demonstrate that the model exhibits good prediction accuracy,with discrepancies from actual data kept within 5%.

Sewage treatment plantWater inflow forecastShort term predictionMachine learningNeural network

龚晓露

展开 >

上海市政工程设计研究总院(集团)有限公司,上海 200092

污水处理厂 进水预测 短期预测 机器学习 神经网络

2024

给水排水
亚太建设科技信息研究院,中国建筑设计研究院,中国土木工程学会

给水排水

CSTPCD北大核心
影响因子:0.8
ISSN:1002-8471
年,卷(期):2024.50(3)