首页|基于Transformer深度学习的供水量预测研究

基于Transformer深度学习的供水量预测研究

扫码查看
供水量预测是指导城镇供水管网智能化调度和精细化管理的依据与基础,针对目前独立计量区域供水量预测准确性不足的问题,提出一种利用深度学习的水量预测方法,基于深度学习中的Transformer 架构,搭建Transformer 时间序列预测模型,利用自注意力机制学习水量序列的动态变化模式,开展短期供水量预测的相关研究.将模型应用于合肥市供水分区计量体系下某二级区域及某三级小区DMA,进行区域入口 1 h短期供水量预测.对比使用长短时记忆网络模型及支持向量回归模型,结果表明,Transformer 水量预测模型的预测效果最优,水量预测模型的预测精准度获得有效提升.
Research of water volume prediction method based on Transformer deep learning
The prediction of water supply is the basis and foundation for guiding the intelligent dispatching and refined management of urban water supply network.Among them,DMA water supply prediction provides support for scientific management of regional leakage and secondary wa-ter supply.Aiming at the problem that the accuracy of DMA water supply prediction is insufficient at present,a water supply prediction method based on deep learning is proposed.Based on the Transformer architecture in deep learning,a Transformer time series prediction model is built which using self attention mechanism to learn the dynamic change mode of water quantity series,to carry out relevant research on short-term water supply prediction.The model is applied to a sec-ondary area and a tertiary DMA area under the water supply zoning metering system of Hefei City to predict the short-term water supply at the regional entrance for 1h.The prediction results were compared with the results of the long short memory network(LSTM)model and the support vec-tor regression(SVR)model to verify the accuracy of the model.

Water demand forecastingMachine learningTime seriesDMA

刘雅亭、黄显怀、杨伟伟、朱波、宋纲

展开 >

安徽建筑大学 水污染控制与废水资源化安徽省重点实验室,合肥 230601

合肥供水集团有限公司,合肥 230601

水量预测 机器学习 时间序列 DMA

2024

给水排水
亚太建设科技信息研究院,中国建筑设计研究院,中国土木工程学会

给水排水

CSTPCD北大核心
影响因子:0.8
ISSN:1002-8471
年,卷(期):2024.50(3)