首页|基于LSTM神经网络的智能曝气研究与应用

基于LSTM神经网络的智能曝气研究与应用

Research and application on intelligent aeration based on LSTM

扫码查看
提出了一种基于长短时神经网络(LSTM)预测DO的曝气量模糊推理控制方法,以解决污水处理厂使用AAO工艺中生物池好氧区DO变化延时、进水水质突变和化学法测量COD频率低等原因导致曝气工艺调节指标DO不稳定的问题.该方法使用LSTM预测生物池好氧区DO、进水COD波动,并联输入到下一层LSTM网络预测最终DO值,同时通过模糊推理系统控制鼓风机风量,实现对曝气工艺评价指标DO的稳定控制.该方法在某污水处理厂上线后,在满足能耗控制的前提下,生物池好氧区DO稳定性相比手动控制和基于PID的控制方法有显著提升,特别针对COD突变后测量不及时的情况有较好鲁棒性.
This paper proposes a fuzzy inference method to control the air volume by predicting DO(dissolved oxygen)based on LSTM(long short-term neural network)which solve the problem of unstable DO in the aeration process of wastewater treatment plants using AAO process caused by some unstable factors,such as the delay of DO changes in the aerobic zone of the biological tank,sudden changes of influent water quality and low frequency of chemical method for measuring COD.The method predicts the DO value of the aerobic zone in the biological tank and the fluctua-tion of COD in the influent water by LSTM,then inputs them to the next layer of LSTM network to predict the final DO value.The fuzzy inference system is used to control air volume to achieve stable control of the evaluation index of oxygenation process,DO.The method significantly im-proved the stability of DO in the aerobic zone of the biological tank compared to manual control and PID-based control methods while meeting energy consumption requirements when implemented in a wastewater treatment plant in Wuhan,and proved has a good robustness when COD measurement was not timely after a mutation as the same time.

LSTMFuzzy inferenceSudden changes of CODThe stability of DO

程雷鸣、张磊、张辛平、李葆林、高兰、童沙、龙程理、李芳芳

展开 >

中国市政工程中南设计研究总院有限公司,武汉 430010

LSTM 模糊推理 COD突变 DO稳定性

2024

给水排水
亚太建设科技信息研究院,中国建筑设计研究院,中国土木工程学会

给水排水

CSTPCD北大核心
影响因子:0.8
ISSN:1002-8471
年,卷(期):2024.50(9)