首页|基于优化机器学习的炼化企业污水场均质池出水水质预测研究

基于优化机器学习的炼化企业污水场均质池出水水质预测研究

Research on the prediction of effluent quality of the homogenization tank in the refinery sewage treatment plant based on optimized machine learning

扫码查看
炼化企业生产工艺流程复杂且装置繁多,炼化污水水质水量波动大,污染物组成复杂,导致下游污水处理系统频繁受到冲击,难以及时响应调控.以华南某炼化企业污水处理系统均质池出水真实水质数据为基础,对水质参数进行相关性分析和特征降维,分别构建了多参数水质预测模型和时间序列水质预测模型.研究结果表明:电导率(Cond)与COD存在一定相关性(PCC和SCC分别为0.493和0.513),水质参数与COD相关性排序为Cond>pH>NH3-N>TP;SVR和BP-ANN多参数预测模型均未取得理想的预测效果,决定系数R2均低于0.5;SVR和BP-ANN时间序列模型预测准确率较多参数模型大幅提高,决定系数R2平均提升45%,均高于0.7,预测值与实测值拟合度高;模型现场验证结果表明,当上游污水水质发生波动时,模型对水质波动趋势预测较为准确,可以有效的指导现场对工艺参数进行调控.
The process flow of petrochemical industries is complex and there are many produc-tion devices.The water quality and quantity of the petrochemical wastewaters treatment system fluctuate greatly,making it difficult to respond to regulation in a timely manner,resulting in fre-quent impacts on downstream wastewater treatment systems.This study is based on real water quality data of homogeneous pool effluent,conduct correlation analysis and feature dimensionality reduction on water quality parameters,and constructs a multi parameter water quality prediction model and a time series water quality prediction model.The research results indicate that there is a certain correlation between conductivity(Cond)and COD(PCC and SCC are 0.493 and 0.513,re-spectively),and the correlation order between various water quality parameters and COD is Cond>pH>NH3-N>TP.SVR and BP-ANN multi parameter prediction models did not achieve ideal pre-diction results,with determination coefficients R2 both below 0.5;The SVR and BP-ANN time se-ries models have higher prediction accuracy,and the parameter model has significantly improved.The coefficient of determination R2 has increased by an average of 45%,both higher than 0.7,the predicted values are consistent with the measured values and have a high degree of fit;The on-site verification results of the model indicate that when the upstream wastewaters quality fluctuates,model can accurately predict the trend of water quality fluctuations and effectively guide the on-site regulation of process parameters.

Petrochemical industriesWastewater treatment systemMachine learningWater quality prediction

陈霖、晏欣、李巨峰、冉照宽、唐智和、栾辉、陈春茂

展开 >

中国石油集团安全环保技术研究院有限公司,北京 102200

中国石油大学(北京)化学工程与环境学院石油石化污染物控制与处理国家重点实验室,北京 102249

炼化企业 污水处理系统 机器学习 水质预测

2024

给水排水
亚太建设科技信息研究院,中国建筑设计研究院,中国土木工程学会

给水排水

CSTPCD北大核心
影响因子:0.8
ISSN:1002-8471
年,卷(期):2024.50(10)