首页|基于时空注意力LSTM的卷烟生产软水能力预测

基于时空注意力LSTM的卷烟生产软水能力预测

扫码查看
卷烟厂软水处理能力预测对于提高卷烟生产中的软水质量、降低软水系统能耗具有重要意义.针对卷烟生产软水系统处理能力预测精度低、软水操作运行时间难以精确设定等问题,提出一种基于时空注意力长短时记忆网络(STLSTM)的软水处理能力预测方法.采用灰色关联分析法计算软水处理能力各影响因素的关联度值,筛选软水处理能力的关键影响因素;针对不同输入特征对软水处理能力预测影响差异问题和不同序列长度对预测效果影响差异问题,构建基于时空注意力机制LSTM的软水运行时间预测模型和软水处理量预测模型,实现软水操作运行时间与软水处理量的精确预测.以红塔辽宁烟草有限责任公司营口卷烟厂软水生产系统为对象进行对比试验,结果表明:STLSTM相较于其他预测方法,软水操作运行时间和软水处理量预测偏差降幅分别为1.3%、11.9%.
Prediction of water softening capacity in tobacco production based on spatiotemporal attention LSTM
Water softening processing capacity prediction is important to improve the quality of soft water in cigarette production and reduce the energy consumption of soft water system.To ad-dress the challenges of low prediction accuracy and difficulty in accurately setting the operational runtime of the water softening system in cigarette production,this paper proposes a method for predicting the water softening processing capacity based on a spatial-temporal attention long short-term memory network(STLSTM).The grey relational analysis method is employed to calculate the correlation values of various influencing factors on the water softening processing capacity,thereby identifying key factors affecting water softening processing capacity.To address the differ-ences in the impact of different input features on the prediction of water softening processing capac-ity and the variations in prediction performance due to different sequence lengths,a prediction model for water softening runtime and water softening processing quantity based on the spatiotem-poral attention mechanism of LSTM is constructed.This model aims to achieve precise predictions of the operational runtime and processing quantity of water softening.Comparative experiments are conducted using the water softening production system at the Yinkou Cigarette Factory of Hongta Liaoning Tobacco Co.,Ltd.The results indicate that,compared to other prediction methods,STLSTM reduces the prediction deviations of water softening operational runtime and processing quantity with reductions of around 1.3%and 11.9%respectively.

Water softening systemSpatial-temporal-attention LSTMGrey relational analy-sisPrediction modelWater softening capacity

陶宏伟、鲁纪平、李胤隆、邱浩峰、王文峰、何明勇、樊志海、王康

展开 >

红塔辽宁烟草有限责任公司,沈阳 110003

吉林烟草工业有限责任公司,延吉 136200

北京工业大学信息科学技术学院,北京 100124

软化水系统 时空注意力LSTM 灰色关联分析 预测模型 软水能力

2024

给水排水
亚太建设科技信息研究院,中国建筑设计研究院,中国土木工程学会

给水排水

CSTPCD北大核心
影响因子:0.8
ISSN:1002-8471
年,卷(期):2024.50(12)