首页|基于深度AUC最大化算法的井漏风险预测

基于深度AUC最大化算法的井漏风险预测

扫码查看
井漏是石油天然气钻井过程中经常面临的一项重要挑战,它的发生会极大的降低钻井效率,增加钻井成本.运用人工智能技术实现井漏风险的精准预测具有重要意义.文章将钻井液泄露分类问题转化为不平衡分类问题.类别间的非均衡性和钻探特征间缺乏高度相关性,对传统的深度学习模型提出了挑战.在这种情况下,传统的准确率度量很难正确评估模型性能.此外,研究引入了一种称为FAUC-S的深度AUC最大化(DAM)算法实现井漏风险预测,该算法是通过关注困难样本的AUC损失来训练组合深度学习模型.实验中还应用了一些经典的深度学习模型实现井漏风险的分类.实验结果表明,与其他3个模型相比,FAUC-S获得了最高的精确度、召回率和F1分数,实验验证了 FAUC-S模型优越的分类性能.因此,该深度模型的成功应用可以有效地帮助钻井队解决钻井问题.
Lost circulation prediction based on deep AUC maximization
Lost circulation is a significant challenge in oil and gas drilling,which can lead to various costly and time-consuming problems.It is of great significance to use artificial intelligence technology to accurately predict the risk of lost circulation.The lost circulation prediction problem was converted into an imbalanced classification problem,which pose challenges to traditional deep learning models due to the imbalance between categories and the lack of high correlation between drilling features.Ac-curacy is not an appropriate measurement for imbalanced classification algorithms.A deep AUC maxi-mization(DAM)algorithm,which is called FAUC-S,is introduced in this paper.It trains a combina-tion deep learning model by focusing on the AUC loss of hard samples(FAUC-S).Several traditional deep learning methods are also applied to classify lost circulation risk during oil exploration in the ex-periments.The result shows that the FAUC-S method achieved the highest accuracy,recall,and F1 score among the other three models.This confirms that the FAUC-S model has superior classification performance.Therefore,the successful implementation of this deep model can help drilling teams ef-fectively solve drilling problems.

lost circulationimbalanced classificationdeep learningAUC maximization

罗俊如、丁言瑞、徐明华、胡超、刘炳官、孔维军、马强维、石林

展开 >

常州大学阿里云大数据学院,江苏常州 213164

中国石油化工股份有限公司江苏油田分公司,江苏扬州 225009

江苏如通石油机械股份有限公司,江苏南通 226400

井漏 非均衡分类 深度学习 AUC最大化

中国石油-常州大学创新联合体项目江苏省双创博士研究项目常州大学阿里云大数据学院研究项目

2021DQ06JSSCBS20210885ZMF21020012

2024

常州大学学报(自然科学版)
常州大学

常州大学学报(自然科学版)

影响因子:0.459
ISSN:2095-0411
年,卷(期):2024.36(3)
  • 30